高中物理假设法解题方法的归纳总结

发布 2019-07-04 09:02:00 阅读 5919

十、假设法。

方法简介。假设法是对于待求解的问题,在与原题所给条件不相违的前提下,人为的加上或减去某些条件,以使原题方便求解。求解物理试题常用的有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径,化难为易,化繁为简。

赛题精析。例1:如图10—1所示,一根轻质弹簧上端固定,下端挂一质量为m0的平盘,盘中有一物体,质量为m 。

当盘静止时,弹簧的长度比其自然长度伸长了l 。今向下拉盘使弹簧再伸长δl后停止,然后松手放开。设弹簧总处在弹性限度以内,则刚松开手时盘对物体的支持力等于( )

a、(1 +)mgb、(1 +)m + m0)g

c、mgd、(m + m0)g

解析:此题可以盘内物体为研究对象受力分析,根据牛顿第二定律列出一个式子,然后再以整体为研究对象受力分析,根据牛顿第二定律再列一个式子和根据平衡位置的平衡条件联立求解,求解过程较麻烦。若采用假设法,本题将变得非常简单。

假设题中所给条件δl = 0 ,其意义是没有将盘往下拉,则松手放开,弹簧长度不会变化,盘仍静止,盘对物体的支持力的大小应为mg 。 以δl = 0代入四个选项中,只有答案a能得到mg 。由上述分析可知,此题答案应为a 。

例2:如图10—2所示,甲、乙两物体质量分别为m1 = 2kg ,m2 = 3kg ,叠放在水平桌面上。已知甲、乙间的动摩擦因数为μ1 = 0.

6 ,物体乙与平面间的动摩因数为μ2 = 0.5 ,现用水平拉力f作用于物体乙上,使两物体一起沿水平方向向右做匀速直线运动,如果运动中f突然变为零,则物体甲在水平方向上的受力情况(g取10m/s2)

a、大小为12n ,方向向右 b、大小为12n ,方向向左。

c、大小为10n ,方向向右 d、大小为10n ,方向向左。

解析:当f突变为零时,可假设甲、乙两物体一起沿水平方运动,则它们运动的加速度可由牛顿第二定律求出。由此可以求出甲所受的摩擦力,若此摩擦力小于它所受的滑动摩擦力,则假设成立。

反之不成立。

如图10—2甲所示。假设甲、乙两物体一起沿水平方向运动,则由牛顿第二定律得:

f2 = m1 + m2)a

f2 = n2 = 2 (m1 + m2)g

由①、②得:a = 5m/s2

可得甲受的摩擦力为f1 = m1a = 10n

因为f = 1m1g = 12n

f1<f所以假设成立,甲受的摩擦力为10n ,方向向左。应选d 。

例3:一升降机在箱底装有若干个弹簧,如图10—3所示,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中( )

a、升降机的速度不断减小。

b、升降机的速度不断变大。

c、先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功。

d、到最低点时,升降机加速度的值一定大于重力加速度的值。

解析:升降机在从弹簧下端触地后直到最低点的一段运动过程,它受重力、弹簧弹力两个力作用。当重力大于弹力时速度继续增大,当重力等于弹力时速度增大到最大,当重力小于弹力时,速度开始减小,最后减为零,因而速度是先增大后减小,所以选项c正确。

假设升降机前一运动阶段只受重力作用,做初速度为零的匀加速直线运动,它下降了h高度,末速度为v ,则:

v2 = 2gh

后一运动阶段升降机只受弹力作用,做初速度为v 、末速度为零的匀减速直线运动,把弹簧压缩了x ,则:

v2 = 2ax

所以2gh = 2ax

而a ==所以:2gh = 2 ()x ,即: =

因为h>x ,所以>2 ,即:a低 =>g ,所以选项d也正确。

例4:一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为θ =30°,如图10—4所示。一长为l的绳(质量不计),一端固定在圆锥体的顶点o处,另一端拴着一个质量为m的小物体(可看做质点)。

物体以速度v绕圆锥体的轴线在水平面内做匀速圆周运动。

1)当v1 =时,求绳对物体的拉力;

2)当v2 =时,求绳对物体的拉力。

解析:当物体以某一速率绕圆锥体的轴线做水平匀面内的匀速圆周运动时,可能存在圆锥体对物体的弹力为零的临界状况,此时物体刚好与圆锥面接触但不发生形变。而当速率变大时,物体将脱离圆锥面,从而导致绳对物体的拉力大小和方向都要变化。

因此,此题的关键是先求出临界状态下线速度的值。

以小物体为研究对象,假设它与圆锥面接触,而没有弹力作用。受力如图10—4甲所示,根据运动定律得:

tcosθ =mg

tsin解①、②得:v =

1)因为v1 =<v ,所以物体m与圆锥而接触且有压力,受力如图10—4乙所示,由运动定律得:

t1cosθ +nsinθ =mg

t1sinθ-ncosθ =m ④

解③、④得拉力:t1 = 3+ 1)

(2)因为v2 =>v ,所以物体m脱离圆锥面,设绳子与轴线的夹角为φ ,受力如图10—4丙所示,由运动定律得:

t2sinφ =m

t2cosφ =mg

解⑤、⑥得绳子拉力:t2 = 2mg

例5:如图10—5所示,倾角为α的斜面和倾角为β的斜面具有共同的顶点p ,在顶点上安装一个轻质小滑轮,重量均为w的两物块a 、b分别放在两斜面上,由一根跨过滑轮的细线连接着,已知倾角为α的斜面粗糙,物块与斜面间摩擦因数为μ ;倾角为β的斜面光滑,为了使两物块能静止在斜面上,试列出α 、必须满足的关系式。

解析:因题目中没有给出具体数值,所以精糙斜面上物块的运动趋势就不能确定,应考虑两种可能。令细线的张力为t ,假设物块a有沿斜面向上运动的趋势时,对a物块有:

t-μwcosα =wsinα

对b物块有:t = wsinβ

两式联立解得:sinβ =sinα +cosα

同理,假设物块a有沿斜面向下运动的趋势时,可解得:

sinβ =sinα-μcosα

因此,物块静止在斜面上时两倾角的关系为sinα-μcosα≤sinβ≤sinα +cosα

例6:如图10—6所示,半径为r的铅球内有一半径为的球形空腔,其表面与球面相切,此铅球的质量为m ,在铅球和空腔的中心连线上,距离铅球中心l处有一质量为m的小球(可以看成质点),求铅球小球的引力。

解析:设想把挖去部分用与铅球同密度的材料填充,填充部分铅球的质量为m1 。为了抵消填充球体产生的引力,我们在右边等距离处又放置一个等质量的球体。如图10—6甲所示。

设放置的球体的质量为m1 ,则:

m1 = 1π (3 =m0 =m

填补后的铅球质量:

m0 = m + m1 =m

则原铅球对小球引力为:

f = f0-f1 =-

例7:三个半径为r 、质量相等的球放一在一个半球形碗内,现把第四个半径也为r ,质量也相等的相同球放在这三个球的正上方,要使四个球都能静止,大的半球形碗的半径应满足什么条件?不考虑各处摩擦。

解析:假设碗的球面半径很大,把碗面变成平面。因为各接触面是光滑的,当放上第四个球后,下面的三个球会散开,所以临界情况是放上第四个球后,下面三个球之间刚好无弹力。

把上面的球记为a ,下面三个球分别记为b 、c 、d ,则四个球的球心连起来构成一个正四面体,正四面体的边长均2r ,如图10—7所示。

设a 、b球心的连线与竖直方向的夹角为α ,设碗面球心为o ,o与b球心的连线与竖直方向的夹角为β ,碗面对上面三个球的作用力都为f ,如图10—7甲所示。先以整体为研究对象,受重力、碗面对三个球的弹力f ,在竖直方向上有:

3fcosβ =4mg

再以b球为研究对象,受重力mg 、碗面对b球的作用力f 、a球对b的压力fn ,根据共点力平衡条件,有:

消去fn ,得:

tan、②联立,消去f得:

tanβ =tan

因为四个球的球心构成一个边长为2r正四面体,如图10—7所示,根据几何关系,可以知道:

tanα =

代入③式得:tanβ =

于是碗面的半径为:r =+r =+r =+r = 7.633r

所以半球形碗的半径需满足r≤7.633r 。

例8:如图10—8所示,一根全长为l 、粗细均匀的铁链,对称地挂在轻小光滑的定滑轮上,当受到轻微的扰动,铁链开始滑动,当铁链下降l1(l1≤)的瞬间,铁链的速度多大?

解析:在铁链下降时,只有重力做功,机械能守恒。当铁链下降l1时,如图10—8甲所示,假设此位置是把左侧铁链下端ab = l1段剪下来再接到右侧铁链的下端cd处实现的。

设铁链的总质量为m ,铁链下降到l1时,l1段中心下降l1高,所以重力做功:

w =l1gl1 =

根据机械能守恒定律: mv2 =

解得铁链的速度:v =l1

例9:如图10—9所示,大小不等的两个容器被一根细玻璃管连通,玻璃管中有一段水银柱将容器内气体隔开(温度相同),当玻璃管竖直放置时,大容器在上,小容器在下,水银柱刚好在玻璃管的正中间,现将两容器同时降低同样的温度,若不考虑容器的变化,则细管中水银柱的移动情况是( )

a、不动 b、上升 c、下降 d、先上升后下降。

解析:只要假设水银柱不动,分析气体压强随温度的变化情况,就可判定水银柱怎样移动。

假设水银柱不移动,则两部气体的体积都不变,根据查理定律,有:,化简为:δp =p

有:δpa =pa ,δpb =pb

由于pa<pb ,所以:δpa<δpb ,水银柱向下移动。

答案:c例10:如图10—10所示,将一定量的水银灌入竖直放置的u形管中,管的内径均匀,内直径d = 1.

2cm 。水银灌完后,两管听水银在平衡位置附近做简谐振动,振动周期t = 3.43s 。

已知水银的密度ρ =1.36×104kg/m3 。试求水银的质量m 。

高中物理专题一 常见的物理解题方法

专题新平台。本专题将介绍物理解题中几种常用的方法。一 分解的方法。分解是人类了解复杂事物 解决复杂问题时最常用的方法之一。医院里分内 外科等,是将复杂的人体分解,以便把握各类疾病的规律 要想了解小闹钟的构造特征,最直接的方法是将其分解 拆开看看 甚至连吃西瓜时先将西瓜切成几片,也可以说是借助于分解的...

高中物理常考题型的总结和解题方法

建议收藏保存 高中物理常考题型的总结和解题方法。高中物理考试常见的类型无非包括以下16种,祥龙教育的老师们总结整理了这16种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!题型1 直线运动问题...

学好高中物理的几大方法

四 正确处理好练习题。有不少同学把提物理成绩的希望寄托在大量做题上,搞题海战术。这是不妥当的,不要以做题多少论英雄 重要的不在做题多,而在于做题的效益要高 目的要达到。做题的目的在于检查学过的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确...