常考题型。
1、和差问题已知两数的和与差,求这两个数。
例:已知两数和是10,差是2,求这两个数。
口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4
2、差比问题例:甲数比乙数大12且甲:乙=7:4,求两数。
口诀】我的比你多,倍数是因果。
分子实际差,分母倍数差。
商是一倍的,乘以各自的倍数,两数便可求得。
先求一倍的量,12/(7-4)=4,所以甲数为:4x7=28,乙数为:4x4=16。
3、年龄问题例1:小军今年8 岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?
口诀】岁差不会变,同时相加减。
岁数一改变,倍数也改变。
抓住这三点,一切都简单。
分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。
已知差及倍数,转化为差比问题。
26/(3-1)=13,几年后爸爸的年龄是13x3=39岁,小军的年龄是13x1=13岁,所以应该是5年后。
例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?
分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。
几年后岁数和是40,岁数差是4,转化为和差问题。
则几年后,姐姐的岁数:(40+4)/2=22,弟弟的岁数:(40-4)/2=18,所以答案是9年后。
4、和比问题已知整体,求部分。
例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。
口诀】家要众人合,分家有原则。
分母比数和,分子自己的。
和乘以比例,就是该得的。
分母比数和,即分母为:2+3+4=9;
分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。
和乘以比例,则甲为27x2/9=6,乙为27x3/9=9,丙为27x4/9=12
5、鸡兔同笼问题。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?
除以脚的差,便是鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36x2)/(4-2)=24
求鸡时,假设全是兔,则鸡数 =(4x36-120)/(4-2)=12
6、 路程问题
口诀】相遇那一刻,路程全走过。
除以速度和,就把时间得。
1)相遇问题。
例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过,即甲乙走过的路程和恰好是两地的距离120千米。
除以速度和,就把时间得,即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120/60=2(小时)
2)追及问题。
例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
口诀】慢鸟要先飞,快的随后追。
先走的路程,除以速度差,时间就求对。
先走的路程:3x2=6(千米)
速度的差:6-3=3(千米/小时)
追上的时间:6/3=2(小时)
7、 浓度问题。
1)加水稀释。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?
口诀】加水先求糖,糖完求糖水。
糖水减糖水,便是加水量。
加水先求糖,原来含糖为:20x15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)
糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)
2)加糖浓化。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?
口诀】加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
加糖先求水,原来含水为:20x(1-15%)=17(千克)
水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)
糖水减糖水,后的糖水量再减去原来的糖水量,21.25-20=1.25(千克)
8、工程问题。
例:一项工程,甲单独做4天完成,乙单独做6天完成。甲乙同时做2天后,由乙单独做,几天完成?
口诀】工程总量设为1,1除以时间就是工作效率。
单独做时工作效率是自己的,一齐做时工作效率是众人的效率和。
1减去已经做的便是没有做的,没有做的除以工作效率就是结果。
1-(1/6+1/4)x2]/(1/6)=1(天)
9、植树问题。
口诀】植树多少棵,要问路如何?
直的减去1,圆的是结果。
例1:在一条长为120米的马路上植树,间距为4米,植树多少棵?
路是直的,则植树为120/4-1=29(棵)。
例2:在一条长为120米的圆形花坛边植树,间距为4米,植树多少棵?
路是圆的,则植树为120/4=30(棵)
10、盈亏问题。
口诀】全盈全亏,大的减去小的;一盈一亏,盈亏加在一起。
除以分配的差,结果就是分配的东西或者是人。
例1:小朋友分桃子,每人10个少9个;每人8个多7个。求有多少小朋友多少桃子?
一盈一亏,则公式为:(9+7)/(10-8)=8(人),相应桃子为8x10-9=71(个)
例2:士兵背子弹。每人45发则多680发;每人50发则多200发,多少士兵多少子弹?
全盈问题,则大的减去小的,即公式为:(680-200)/(50-45)=96(人),相应的子弹为96x50+200=5000(发)。
例3:学生发书。每人10本则差90本;每人8 本则差8本,多少学生多少书?
全亏问题,则大的减去小,即公式为:(90-8)/(10-8)=41(人),相应书为41x10-90=320(本)
11.余数问题。
例:时钟现在表示的时间是18点整,分针旋转1990圈后是几点钟?
口诀】余数有(n-1)个,最小的是1,最大的是(n-1)。
周期性变化时,不要看商,只要看余。
分析:分针旋转一圈是1小时,旋转24圈就是时针转1圈,也就是时针回到原位。1980/24的余数是22,所以相当于分针向前旋转22个圈,分针向前旋转22个圈相当于时针向前走22个小时,时针向前走22小时,也相当于向后24-22=2个小时,即相当于时针向后拔了2小时。
即时针相当于是18-2=16(点)
12.牛吃草问题。
口诀】每牛每天的吃草量假设是份数1,a头b天的吃草量算出是几?m头n天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。原有的草量依此反推。
公式:a头b天的吃草量减去b天乘以草的生长速率。未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;有的草量除以剩余的牛数就将需要的天数求知。
例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27x6=162,23头牛9天的吃草量是23x9=207;
大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天),则草的生长速率是45/3=15(牛/天);
原有的草量依此反推——
公式:a头b天的吃草量减去b天乘以草的生长速率。
原有的草量=27x6-6x15=72(牛/天)。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率,这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)
易错题分析与对策。
](1)明确在乘除混合运算或在加减混合运算中,如果不具备简便运算的因素,就要按从左往右的顺序计算。
](1)明确百分数与分数的区别;理解百分数的意义。
](1)根据题意举出反例,让学生知道组成一个角还有一个必不可少条件是有顶点。 (2)回忆角的概念。强调要组成一个角必不可少的两个条件:一个顶点、两条射线。
](1)巩固理解比的意义及求比的方法。
小学六年级数学易错题
1.一个口袋里装有完全一样的红 黄 蓝三种颜色的球若干个,在看不见的情况下,一次至少摸出 只球,才能保证其中4只球是相同颜色。2.一个口袋里装有红 黄 蓝三种颜色的铅笔各10支,至少摸出 支铅笔,肯定有10支颜色相同。3.甲数与乙数的比值是0.4,那么甲数与乙数的比为如果这个比的前项扩大4倍,要使比...
小学六年级数学易错题
填空。1.在比例里,两个 的积等于两个 的积。2.如果a x b x a,b 0 那么a b 3.正方形周长和变长的比是 比值是 判断。1.0.3 1.2和16 4可以组成比例 2.实际距离和图上距离的比叫比例尺。选择。1.一个长方形的操场长80米,宽60米。把它画在长30厘米,宽20厘米的长方形纸...
小学六年级数学易错题
17 单独完成一项工程,甲队要10小时,乙队要15小时。现在甲队先独做2小时,余下的乙队在参加工作,还需要多少小时完成任务?18 小林早晨7 30从家去学校,每分钟走50米。刚到学校门口发现数学书没有带,立即沿原路返回,每分钟走70米。到家正好是7 54。小林家离学校多少米?19 一个长方体仓库从里...