一、 复习简算(加减凑整)
凑整法:凑整法就是将算式中的数分成若干组,使每组的运算结果都是整。
十、整百、整千的数,再将各组的结果相加。例题。
5、果园里有987棵果树,其中桃树210棵,苹果树387棵,香蕉树190棵,剩下的都是奇异果树,问奇异果树有多少棵?
6、柳林体育馆器材室里有三框篮球,第一框里有226个篮球,第二框里有250个篮球,第三框有224个篮球,一共有多少个篮球?
7、红星小学四年级有5个班,人数分别是45人,50人,55人,49人,51人,问四年级一共有多少人?
底老师有话说:
同学们,当你复习完第一讲后老师有关于解决简算问题的一些小想法,跟大家分享一下。比如直接简便计算的时候,一般加法都是凑整,这里一般不涉及小数分数,凑整是指凑整10,整100,整1000等,比如看计算里有两个数他们的末两位是44和56,那么他们就一般可以加在一起,当然前面有百位千位等也要加在一起,这就是个凑整,一些应用题求和也是这样计算。一般减法的凑整其实也可以看末位,末两位或者末三位,比如456-120-156,可以用加法交换律把-120和-156换个位置,用456先减156,也就是456-156-120,那么就简单了。
当计算中涉及到小括号的时候还有式子里有加减乘除时候,要先算小括号里的内容,然后计算小括号外的内容,如果有加减乘除,那么先算乘除后算加减,都是容易让同学们犯错的地方,当然有时候凑整的时候有时候凑的不一定是整100或者整1000,比如44+46+55+45,这道题结果不是200哦,是(44+46)+(55+45)=90+100=190,所以同学们做计算题的时候一定要谨慎,认真,不要粗心,加油~
二、 复习数三角形问题。
同学们,数三角形的时候,一般可以找目标三角形中有多少个基本三角形,如右图,有3个基本三角形,那么可以数出3+2+1=6
个三角形,因为由一个基本三角组成的三角形有3个,由两个基本三角形组成的三角形有2个,由三个基本三角形组成的三角形有1个,所以可以数出3+2+1=6个。或者可以看从大三角形的顶点向下射出的线把底边分成多少段,那么,每一段底边上线段就对应一个三角形,也是可以数出3+2+1=6段,那么就有6个三角形。
有时候这类题会加入一些线段,将三角形切开,比如右图中这种情况,我们数三角形时,可以先数上面那一层,上面第一层可以看成里面有三个基本三角形,那么就有3+2+1=6个,下面那层都不是三角形,是四边形,所以 ,我们说的所谓第二层其实是上面的三角形加上下面这层组成的大三角形,那么这个三角形里也有3+2+1=6个三角形,一共是。
3+2+1)×2=12个三角形。
像这种横线,只要不经过底下左右两个底角,不管线是否平行与底边,都可以用此方法,比如右边这幅图中两条线虽然不平行,可以看出这两条线把三角形上下分成三部分,那么先算最上面的三角形中的三角形数量,是3+2+1=6个,然后第二层是上面的三角形和中间这层加在一起构成的三角形,可以数出3+2+1=6个三角形,最后再加上底下这层图形一起构成的大三角形,可以数出3+2+1=6个,一共是(3+2+1)×3=18个。
当横线经过底角时,三角形的数法会有一些变化,比如有图,一条线经过左底角,数的时候,可以把横线上面这个三角形看成一个整体,先数出3+2+1=6个三角形,然后加上横线下面的部分看成一个整体,也就是这个大三角形,作为第二层,可以数出3+2+1=6个三角形,最后横线下面这部分也可以数出1×3=3个三角形,因为这部分三角形单独拿出来可以看成右下图,所以最后一共有(3+2+1)×2+1×3=15个三角形。
同学们,你们明白了吗?
底老师有话说:
同学们,上面是我们课本上常见的几种数三角形的方法,其实课本。
例题中还有其他数三角形方法,比如给三角形命名,在顶点上标记字母。
然后按一定的方式来数;或者以确定一条边的方式来数,都是可以的。
同学们在遇到一些问题时,不要着急,有时候换个角度就可以把一些看。
似没见过的题型转变成我们认识的题型。
练习请同学们数出图中三角形的数量是多少?
三、复习幻方问题。
1、杨辉法:九子斜排,上下对易,左右相更,四维挺出。
图1图2图3
2、罗伯法:1居上行正**,依次放在右上角。
上出框时往下填,右出框时左边放。
排重便在下格填,右上排重一个样。
请同学们打开课本12页,复习罗伯法口诀下面的①-⑥图)
3、幻方三定律:
1、中心数 x 3=幻和
2、过中心数两端的两数之和=中心数 x 2
(如右图中,a+b=中心数×2)
3、角上的数等于对面两数之和的一半。
(如右图中,a+b=c×2,a、b、c可以。
构成一个三角形,像这样的三角形,一个。
幻方里有4个。)
练习:1、 请你用杨辉法将4-12这九个数字填入右面方格中,使其成为一个三阶幻方。
2、 请你用罗伯法将2-10这九个数字填入右面方格中,使其成为一个三阶幻方。
3、请完成下面两个幻方。
幻和幻和=底老师有话说:
同学们,解决幻方问题需要看它本身是什么类型的,比如要是给你一组连续数或者自编一组连续数去填一个完全空白的幻方,那么杨辉法和罗伯法都可以使用;如果是需要填一个已经有几个数的幻方,那么可以根据幻方本身的性质和幻方三定律去解决。连最后填完一定要用中心数×3=幻和去验算,并且找几列数看三个数的和是否一样并且等于幻和。
四、复习连续数问题。
1、已知奇数个连续数的和,求连续数问题
总和÷个数=中间数。
例子:已知5个连续自然数和为15,求这几个连续自然数。
分析:3既是中间数,那么比它小的数就连续减1得到,比它大的数连续加1得到)
答:这几个连续自然数是。
2、已知偶数个连续数的和,求连续数问题。
总和÷(个数÷2)=小组和。
(小组和-连续数差值)÷2=较小数。
小组和-较小数=较大数。
例子:已知6个连续自然数和为21,求这几个连续自然数。
分析:6个数可以分成6÷2=3个和相等的组,其中第1个数和第6个数相加的和等于第2个数加第5个,也等于第3个加第4个,其中第3个和第4个位于这6个连续数的中间位置,我们需要求的较小数和较大数,指的就是这两个数。)
答:这几个连续自然数是。
底老师有话说:
同学们,连续数问题总体分成两大类:
第一类是奇数个连续数问题,比如3个、5个、7个、9个……的连续奇/偶/自然数问题,这类题一般我们用连续数的总和÷个数=中间数的方法求出中间数,然后根据题意,如果是连续自然数,就用中间数连续+1和-1来得到其他连续数,如果是连续奇数或连续偶数,就用中间数连续+2和-2的方法得到其他连续数。
第二类是偶数个连续数问题,比如4个、6个、8个、10个….的连续奇/偶/自然数问题,这类问题一般我们用分组的方式解决,因为是偶数个连续数,我们可以把他们看成等差数列,那么他们每一个数都比前一个数多1或2,那么可以两两一组,将连续数列分成个数÷2个组,每个组两个数和相等,我们的突破口在于这个偶数个连续数的数列中间一定有两个连续数,它们处在数列的中间位置,它们的小组和我们可以求出,由于它们之间相差1或2,就可以求出这两个连续数,它们就是前面式子里的“较大数”和“较小数”,写出较大数和较小数,再依次写出其他的连续数。(第二类问题其实还有一种解法,就是跟第一类问题相同,用总和÷个数=中间数的方法,但是这样求得的中间数并不在最后的结果里,它是位于中间两个连续数中间的一个数,或者也可以把它看成中间两个连续数的平均数。
根据这个中间数求出中间的“较小数”和“较大数”,这样也可以得出最后的结果。这样的解决方法因为在计算时有时会遇到小数除法,所以不建议所有人都用这种方法。)最后,同学们要认真审题,连续数问题并不是都只要求出这几个连续数的,有时会求最小数,最大数,或者直接求中间数。
练习题:1、九个连续偶数的和是360,这九个连续偶数分别是多少?
2、八个连续偶数的和是360,这八个连续偶数分别是多少?
3、六个连续自然数的和是99,这六个连续自然数分别是多少?
4、六个连续奇数的和是96,这六个连续奇数分别是多少?
5、六个连续偶数的和是126,这六个连续偶数中最大的偶数是多少?
五、复习平均数问题。
平均数公式: 总数(总和)÷个数(份数)=平均数。
例题1(课本21页例1):有甲、乙、丙三个数,甲、乙的和是70,甲、丙的和是82,乙、丙的和是76,甲、乙、丙三个数的平均数是多少?
分析:此题部分同学相对能理解,要求平均数需要找到甲乙丙三个数的总和,然后用总和除以3就是三个数的平均数,但是题中没有直接得到的方法,所以需要用70+82+76的和÷2求得,因为甲+乙=70,甲+丙=82,乙+丙=76,那么三个数的和中就包括2个甲,2个乙,2个丙,所以1份的甲乙丙的和我们就可以得到,再÷3得到的就是甲乙丙的平均数。)
70+82+76)÷2=114 (1份甲乙丙的总和)
114÷3=38甲乙丙的平均数)
例题2(课本22页例2):小红期中考试语文得95分,数学得98分,英语考多少分才能使三门学科期中考试的平均成绩达到96分?
分析:此题是说如何使平均成绩达到96,也就是三科成绩的平均数达到96,此时他们的份数是3,总和=平均分×三即 3×96=288(分),然后依次减去语文、数学分数,得到的就是英语成绩。)
3×96=288(分3科总分)
288-95-98=95(分) (总分减语文、数学分,得到英语分)
答:英语考95分可使三科平均分达到96分。
四年级奥数复习
1 我是一个能同时被 整除的三位数,而且比600小。我最大是多少?最小是多少?2 育红小学组织五年级三个班的代表进行抢答比赛,比赛规则是 每班代表的基础分为100分,答对一题加10分,答错一题不但不加分,反而要扣掉5分。四 2 班代表对其中的10题进行了抢答,最后得分是155分,他们答对了几题?3 ...
四年级奥数复习
四年级奥数期末复习试卷。姓名。一 填空题 每题4分,共52分 1.请按下列规律在括号内填上适当的数。2.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依此类推,从1点至12点,这12小时共敲 下。3.下面数是按一定的规律排列的 3,12,21,30,39,48,57,66 求 1 第12个数是 2 ...
四年级奥数综合复习 四
1.已知等差数列 求599是第几项?2.198 297 396 495 3.下面不同的字母代表不同的数字,相同的字母代表相同的数字,它们各代表数字几?xy x y x yz x z x y x x z 4.张爷爷家养的鸡比兔多12只,鸡的脚比兔的脚多18只,张爷爷家养鸡 兔各多少只?5.有一个班的同...