《工程材料基础》课程离线作业题目答案

发布 2022-09-02 05:27:28 阅读 6089

1. 何谓失效?零件失效方式有哪些?

通常来说,将“产品丧失其规定功能的现象”称之为失效。

主要失效类型有:过量弹性变形、塑性变形和断裂。

2. 何谓过冷度?为什么结晶需要过冷度?它对结晶后晶粒大小有何影响?

熔融金属平衡状态下的相变温度与实际相变温度的差值。纯金属的过冷度等于其熔点与实际结晶温度的差值,合金的过冷度等于其相图中液相线温度与实际结晶温度的差值。

每一种物质都有自己的平衡结晶温度或者称为理论结晶温度,但是,在实际结晶过程中,实际结晶温度总是低于理论结晶温度的,这种现象称为过冷现象,两者的温度差值被称为过冷度。过冷度的大小与冷却速度密切相关,冷却速度越快,实际结晶温度就越低,过冷度就越大;反之冷却速度越慢,过冷度就越小,实际结晶温度就更接近理论结晶温度。连续冷却时候,冷却速度的高低影响相变时过冷度的大小。

正是过冷度的大小影响组织形貌和结晶类型。缓慢冷却时候,合金在不大的过冷度下就发生了相变。这时候只能结晶析出石墨。

过冷度足够大冷却速度足够快时候,就会析出渗碳体。

3. 何谓过冷奥氏体?如何测定钢的奥氏体等温转变图?奥氏体等温转变有何特点?

钢的过冷奥氏体等温转变曲线的开始温度和终了温度曲线像英文字母c,它描述了奥氏体在等温转变过程中,不同温度和保温时间下的析出物的规律,称为c曲线或者ttt曲线,而连续冷却曲线是各种不同冷速下,过冷奥氏体转变开始和转变终了温度和时间的关系简称连续冷却转变图或者cct图。

相同点是二者均是过冷奥氏体的转变**,前者是在一定温度下的等温转变,后者是以一定的冷却速度时的连续转变,二者在本质上是一致的,转变过程和转变产物的类型基本相互对应。

二者的区别在于冷却条件的不同,其显着的区别主要有:

一、连续冷却时,过冷奥氏体是在一个温度范围内完成组织转变的,其组织的转变很不均匀,先转变的组织较粗,而后转变的组织较细,往往得到几种组织的混合物。

二、共析钢连续冷却时,只有珠光体的转变而无贝氏体的转变。原因在于当冷却速度缓慢时,过冷奥氏体将全部转变为珠光体,当冷却速度过快时,则过冷奥氏体在中温区停留时间还未达到贝氏体转变的孕育区,已经降到ms点开始转变为马氏体。

4. 哪些合金元素可使钢在室温下获得铁素体组织?哪些合金元素可使钢在室温下获得奥氏体组织?并说明理由。

在钢中加入合金元素后,钢的基本组元铁和碳与加入的合金元素会发生交互作用。钢的合金化目的是希望利用合金元素与铁、碳的相互作用和对铁碳相图及对钢的热处理的影响来改善钢的组织和性能。

一、合金元素与铁、碳的相互作用合金元素加入钢中后,主要以三种形式存在钢中。即:与铁形成固溶体;与碳形成碳化物;在高合金钢中还可能形成金属间化合物。

1. 溶于铁中。

几乎所有的合金元素(除pb外)都可溶入铁中, 形成合金铁素体或合金奥氏体, 按其对α-fe或γ-fe的作用, 可将合金元素分为扩大奥氏体相区和缩小奥氏体相区两大类。

扩大γ相区的元素—亦称奥氏体稳定化元素, 主要是mn、ni、co、c、n、cu等, 它们使a3点(γ-feα-fe的转变点)下降, a4点( γfe的转变点)上升, 从而扩大γ-相的存在范围。其中ni、mn等加入到一定量后, 可使γ相区扩大到室温以下, 使α相区消失,称为完全扩大γ相区元素。另外一些元素(如c、n、cu等), 虽然扩大γ相区, 但不能扩大到室温, 故称之为部分扩大γ相区的元素。

缩小γ相区元素——亦称铁素体稳定化元素, 主要有cr、mo、w、v、ti、al、si、b、nb、zr等。它们使a3点上升, a4点下降(铬除外, 铬含量小于7%时,a3点下降; 大于7%后,a3点迅速上升), 从而缩小γ相区存在的范围, 使铁素体稳定区域扩大。按其作用不同可分为完全封闭γ相区的元素(如cr、mo、w、v、ti、al、si等)和部分缩小γ相区的元素(如b、nb、zr等)。

2. 形成碳化物。

合金元素按其与钢中碳的亲和力的大小, 可分为碳化物形成元素和非碳化物形成元素两大类。

常见非碳化物形成元素有:ni、co、cu、si、al、n、b等。它们基本上都溶于铁素体和奥氏体中。

常见碳化物形成元素有:mn、cr、w、v、nb、zr、ti等(按形成的碳化物的稳定性程度由弱到强的次序排列),它们在钢中一部分固溶于基体相中,一部分形成合金渗碳体, 含量高时可形成新的合金碳化合物。

5. 何谓石墨化?铸铁石墨化过程分哪三个阶段?对铸铁组织有何影响?

钢中渗碳体分解成为游离碳并以石墨形式析出,在钢中形成石墨夹杂的现象。

铸铁的石墨化过程铸铁中石墨的形成过程称为石墨化过程。铸铁组织形成的基本过程就是铸铁中石墨的形成过程。因此,了解石墨化过程的条件与影响因素对掌握铸铁材料的组织与性能是十分重要的。

根据fe-c合金双重状态图,铸铁的石墨化过程一,铸铁的石墨化过程铸铁中石墨的形成过程称为石墨化过程。铸铁组织形成的基本过程就是铸铁中石墨的形成过程。因此,了解石墨化过程的条件与影响因素对掌握铸铁材料的组织与性能是十分重要的。

根据fe-c合金双重状态图,铸铁的石墨化过程可分为三个阶段:第一阶段,即液相亚共晶结晶阶段。包括,从过共晶成分的液相中直接结晶出一次石墨,从共晶成分的液相中结晶出奥氏体加石墨,由一次渗碳体和共晶渗碳体在高温退火时分解形成的石墨。

中间阶段,即共晶转变亚共析转变之间阶段。包括从奥氏体中直接析出二次石墨和二次渗碳体在此温度区间分解形成的石墨。第二阶段,即共析转变阶段。

包括共折转变时,形成的共析石墨和共析渗碳体退火时分解形成的石墨。

影响铸铁石墨化的因素铸铁的组织取决于石墨化进行的程度,为了获得所需要的组织,关键在于控制石墨化进行的程度。实践证明,铸铁化学成分、铸铁结晶的冷却速度及铁水的过热和静置等诸多因素都影响石墨化和铸铁的显微组织。 1.

化学成分的影响铸铁中常见的c,si、mn、p、s中,c,si是强烈促进石墨化的元素,s是强烈阻碍石墨化的元素。实际上各元素对铸铁的石墨化能力的影响极为复杂。其影响与各元素本身的含量以及是否与其它元素发生作用有关,如ti、zr、b、ce、mg等都阻碍石墨化,但若其含量极低(如b、ce<0.

01%,t<0.08%)时,它们又表现出有促进石墨化的作用。 2.

冷却速度的影响一般来说,铸件冷却速度趋缓慢,就越有利于按照fe-g稳定系状态图进行结晶与转变,充分进行石墨化;反之则有利于按照 fe-fe3c亚稳定系状态图进行结晶与转变,最终获得白口铁。尤其是在共析阶段的石墨化,由于温度较低,冷却速度增大,原子扩散困难,所以通常情况下,共析阶段的石墨化难以充分进行。铸铁的冷却速度是一个综合的因素,它与浇注温度、传型材料的导热能力以及铸件的壁厚等因素有关。

而且通常这些因素对两个阶段的影响基本相同。提高浇注温度能够延缓铸件的冷却速度,这样既促进了第一阶段的石墨化,也促进了第二阶段的石墨化。因此,提高浇注温度在一定程度上能使石墨粉化,也可增加共析转变。

3.铸铁的过热和高温静置的影响在一定温度范围内,提高铁水的过热温度,延长高温静置的时间,都会导致铸铁中的石墨基体组织的细化,使铸铁强度提高。进一步提高过热度,铸铁的成核能力下降,因而使石墨形态变差,甚至出现自由渗联体,使强度反而下降,因而存在一个‘临界温度’。

临界温度的高低,主要取决于铁水的化学成分及铸件的冷却速度。一般认为普通灰铸铁的临界温度约在1500一1550℃左右,所以总希望出铁温度高些。

6. 铝合金是如何分类的?

按用途分为铸造铝合金和变形铝合金,又细分成各个牌号按制造的成品分为工业铝、航空铝、民用铝、导电铝几大类按含铝量分为熟铝和生铝按形态分为铝板、铝锭、铝线、铝杆、铝饼等按生产出处分为原生铝和再生铝。

7.简述高分子链的结构特点,它们对高聚物性能有何影响?

高分子链的结构特点:1高分子呈现链式结构,2高分子链具有柔性,3高聚物的多分散性。

高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。

高密度聚乙烯(hdpe)结构为-[ch2ch2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为ch2ch2 ,称为链节,n为链节数,亦为聚合度。聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。

聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于ch2=chx或ch2=chx2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。

如下所示:

头-头(尾-尾)连接为:

头-尾连接为:

这种由于结构单元之间连接方式的不同而产生的异构体称为顺序异构体。一般情况下,自由基或离子型聚合的产物中,以头-尾连接为主。用来作为纤维的高聚物,一般要求分子链中单体单元排列规整,使聚合物结晶性能较好,强度高,便于抽丝和拉伸。

8何谓陶瓷?陶瓷的组织由哪些相组成?它们对陶瓷性能各有何影响?

陶瓷的原料通常是由粘土、石英和长石三部分组成。在加热烧成或烧结和冷却过程中,由这三部分组成的坯料相继发生四个阶段的变化:

(1) 低温阶段(室温~300℃) 残余水分的排除。

(2) 分解及氧化阶段(300~950℃) 结构水的排除;有机物、碳素和无机物等的氧化;碳酸盐、硫化物等的分解;石英晶型转变。

(3) 高温阶段(950℃~烧成温度) 氧化、分解反应继续进行;相继出现共熔体等液相,各组成物逐渐溶解;一次莫来石(3al2o3·2sio2)晶体生成; 二次莫来石晶体长大; 石英块溶解成残留小块; 发生烧结成瓷。

(4) 冷却阶段(烧成温度~室温) 二次莫来石晶体析出或长大; 液相转变; 残留石英晶型转变。

陶瓷的典型组织结构包括三种相:晶体相(莫来石和石英)、玻璃相和气相。

晶体相是陶瓷的主要组成相,主要有硅酸盐、氧化物和非氧化合物等。它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。

玻璃相作用。

①粘连晶体相,填充晶体相间空隙,提高材料致密度;

②降低烧成温度,加快烧结;

③阻止晶体转变,抑制其长大;

④获得透光性等玻璃特性;

⑤不能成为陶瓷的主导相:对陶瓷的机械强度、介电性能、耐热耐火性等不利。

气相是陶瓷组织内部残留下来的孔洞。它的形成原因比较复杂,几乎与原料和生产工艺的各个过程都有密切的联系,影响因素也比较多。

9.何谓复合材料?都有哪些类型?

由异质、异性、异形的有机聚合物、无机非金属、金属等材料作为基体或增强体,通过复合工艺组合而成的材料。除具备原材料的性能外,同时能产生新的性能。

复合材料是一种混合物。在很多领域都发挥了很大的作用,代替了很多传统的材料。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。

按其结构特点又分为:①纤维增强复合材料。将各种纤维增强体置于基体材料内复合而成。

如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。

通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。

将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。

与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显着提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。

工程材料作业题

机械工程材料与热处理 作业题。1 工程材料按化学键 按使用性能如何分类?2 什么是材料的使用性能与工艺性能?又分别包括哪些性能?3 金属硬度常用的测试方法与适用的材料硬度范围?4 晶体与非晶体的本质区别?5 金属常见的三种晶体结构?晶向与晶面指数的求法?bcc与fcc结构的密排面与密排方向?6 晶体...

《工程材料》作业题

一 填空题 1 金属的强化途径有三种,加工硬化属于。强化。2 静载时材料的机械性能有等,弹性的评价指标有两个,弹性模量e是金属材料最稳定的性能之一对它的影响很小。3 金属晶体的常见晶格类型有等几种,fe的晶格为晶格,亚晶界是属于缺陷。4 单晶体塑性变形的基本形式有两种,系数愈多,金属的塑性愈好。5 ...

边坡工程课程作业题

边坡工程学 土木工程科学前沿 课程作业。一 课程作业可在以下内容中任选一个方面进行,题目自拟。若学位 研究课题属于边坡工程学科领域者,建议结合学位 内容完成课程作业。1 边坡岩土体力学特性研究。2 水对边坡稳定性的影响。3 边坡稳定性分析方法。4 边坡加固技术。5 边坡监测。6 边坡灾害智能 7 生...