结构力学教案结构矩阵分析

发布 2021-05-29 12:31:28 阅读 4386

12.1 概述。

一、概述。进行力学分析的方法有很多种,归结起来可以分为两类,即解析法和数值法。

结构矩阵分析方法用于分析连续体时,称为有限单元法。

结构矩阵分析法就是有限单元法在杆件结构分析中的应用。

二、矩阵位移法的解题思路:“先分再合,拆了再搭”

可以概括为:“一分一合”。

通过“一分一合”或“拆了再搭”的过程,建立结点力与结点位移之间的关系式,即整个结构的刚度方程。最后,解算刚度方程,完成结构计算。

三、结构矩阵分析依所选未知量不同,可分为矩阵力法、矩阵位移法和混合法。

1 力法(柔度法)

2 位移法(刚度法)

3 矩阵位移法又有刚度法和直接刚度法之分。

一、矩阵位移法的概念。

1、确定结点、划分单元、建立坐标。

2、单元分析。

单元分析的目的是研究单元杆端力与杆端位移的关系,建立单元刚度方程。

单元①:写成矩阵形式。

单元②:写成矩阵形式

单元刚度方程的一般表达式

3、整体分析。

整体分析是根据位移条件和平衡条件,将离散的单元组集成原结构,建立整个结构的刚度方程。

二、直接刚度法。

在整体坐标系下,将单元刚度矩阵中的子块或元素,按照其下标放到整体刚度矩阵中相应位置,“对号入座,同号相加”,组集整体刚度矩阵的方法。

三、刚性支座条件的引入。

主1副零”法:把总刚主对角元素kii改为1,第i行、i列的其余元素都改为零,对应的荷载项pi也改为零。

四、非结点荷载的处理。

当连续梁上的荷载除了直接作用在结点上的荷载pd之外,还有作用在跨中的非结点荷载时,应将非结点荷载等效变换到结点上,即采用等效结点荷载计算。

五、用矩阵位移法计算连续梁举例(分析书上例题)

六、练习:试写出图示连续梁整体刚度矩阵。

一、一般单元。

单元的杆端力与杆端位移之间的关系式称为单元刚度方程,以矩阵形式表示。

“单元刚度方程”

“单元刚度矩阵”。

二、梁单元。

梁单元刚度矩阵的特点:

1)梁单元刚度矩阵可由一般单元刚度矩阵划掉第行和第列得到;

(2)为对称矩阵;为奇异矩阵;具有分快性质。

三、轴力单元

轴力单元刚度矩阵的特点:

(1) 梁单元刚度矩阵可由一般单元刚度矩阵划掉第行和第列得到;

(2) 为对称矩阵;为奇异矩阵;具有分快性质。

(用这种删去单元两端并不存在或不考虑的位移所对应的行和列的方法,还可以得到其它形式的特殊单元。)

一、整体坐标系与局部坐标系。

1、两种坐标系建立的必要性:连续梁不必进行坐标变换,桁架、刚架必须进行坐标变换。

2、整体坐标系:各个单元共同参考的坐标系(结构坐标系)。

3、局部坐标系:专属某一个单元的坐标系。(单元坐标系)。

二、桁架单元的坐标变换。

2、“轴力单元坐标变换矩阵”,该矩阵为正交矩阵。

三、整体坐标系下的单元刚度矩阵。

1、整体坐标系下的单元刚度方程。

两种坐标系下的杆端力关系。

两种坐标系下的杆端位移关系。

局部坐标系下的单元刚度方程。

2、整体坐标系下桁架单元刚度矩阵(由学生推导)

3、整体坐标系下刚架单元刚度矩阵。

11-5 节点、单元及未知位移分量编码。

一、一般杆件结构的后处理法的概念。

先不考虑支承条件建立整个结构的刚度方程,而后再引入支承条件修改刚度方程,进而求解结点未知位移的方法。

二、先处理法。

1、定义:首先考虑支承情况,仅对未知的自由结点位移分量编码,直接建立“修正的整体刚度方程”的方法。

2、有关先处理法的基本概念。

1)位移分量编码。

a)仅对未知的独立位移分量编码。

b)支座处位移分量为零时,则位移分量编码为零。

2)单元两端结点号数组(二维数组)

3)结点位移分量的位移号数组。

4)单元定位数组(单元始端及末端的位移号组成的向量)

5)练习:试确定图示结构坐标系,并对结点、单元、位移分量进行编码,同时写出第三单元结点号数组、第三结点位移编码、第三单元定位数组(考虑轴向变形、略去轴向变形两种情况)。

11-6 平面杆件结构的整体刚度矩阵。

11-7 非结点荷载处理。

一、非结点荷载的处理(连续梁)

等效结点荷载计算。

二、综合结点荷载定义。

三、等效结点荷载的确定。

1、单元等效结点荷载。

1) 求单元e的固端力。

2) 求单元e的等效结点荷载。

以局部坐标系下的杆端力表示整体坐标系下的杆端力。

3) 求整体结构的等效结点荷载

按单元结点位移分量编号,将各分量叠加pe中去。

4) 按单元结点位移分量编号,直接求得。

5) 综合结点荷载的确定。

2、局部坐标系下杆端力的计算。

一、解题步骤。

1)整理原始数据,确定结点、划分单元、选择整体坐标系、局部坐标系并对单元、结点、及结点位移分量进行编号。

2)计算局部坐标系中单元刚度矩阵。

依计算结构的不同,可按常用矩阵或其它形式单元刚度矩阵完成计算。

3)计算整体坐标系中单元刚度矩阵。

选择相应的局部坐标系中单元刚度矩阵,代入式中完成计算。钢架与桁架计算结果不同。

4)建立整个结构的刚度矩阵。

首先,根据单元两端的结点位移号,形成单元定位数组;而后,根据单元定位数组,将整体坐标系下的单元刚度矩阵中的各元素“对号入座,同号相加”组集整个结构的刚度矩阵。

5)求自由结点荷载。

首先计算非结点荷载引起的单元固端力,而后计算整体坐标系下的单元等效结点荷载,然后根据单元定位数组“对号入座,同号相加”组集整个结构的等效结点荷载,再加上直接作用在结点上的荷载形成综合结点荷载,分块后可得。

6)建立整个结构的刚度方程,并由求解自由结点位移。

7)根据问题要求,求支座反力及绘内力图等。

二、平面杆件结构分析举例。

12.9 连续梁及平面刚架静力分析源程序。

一、连续梁静力分析源程序。

1、程序编制说明。

2、计算模型及计算方法。

3、连续梁静力分析程序(fortran)

1)程序标识符的说明。

2)框图。3)连续梁静力分析源程序。

二、 平面刚架静力分析源程序(简要介绍)

结构力学结构分析作业

一 实验目的。1 了解节点 单元 约束 荷载等基本概念 2 学习并掌握计算模型的交互式输入方法 3 建立任意体系的计算模型并做几何组成分析 4 计算平面静定结构的内力。二 几个组成分析。1 inp 文件。结点,6,2,2 结点,7,4,2 单元,3,2,1,1,1,1,1,1 单元,2,6,1,1,...

结构力学练习

9 13 结点,1,0,0 结点,2,0,1 结点,3,1,1 结点,4,1,0 单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0 单元,4,1,1,1,0,1,1,0 单元,2,4,1,1,0,1,1,0 单元,3,1,1,1,0,1...

结构力学总结

结构力复习总结。题型 一 判断题5道,每题4分共20分 二 选择题3道,每题4分共12分 计算题6道共68分。三 静定结构做弯矩图。四 多跨静定梁的影响线并求量值。五 力法 两个未知量 六 位移法 对称结构,先简化再画弯矩图 七 力矩分配法 一个节点位移 八 动力法,单自由度系统求最大动位移动弯矩。...