试题体验应用

发布 2021-04-10 21:57:28 阅读 7766

1.设f(x)为定义在r上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=(

a.3b.1

c.-1d.-3

解析:选d.因为f(x)为定义在r上的奇函数,所以f(0)=0,可求得b=-1,f(-1)=-f(1)=-21+2+b)=-3.故选d.

2.已知定义在r上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若。

方程f(x)=m(m>0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4

解析:因为定义在r上的奇函数,满足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8

答案:-83.(2014·滨州一模)已知定义在r上的函数y=f(x)满足以下三个条件:①对于任意的x∈r,都有f(x+1)=;函数y=f(x+1)的图象关于y轴对称;③对于任意的x1,x2∈[0,1],且x1<x2,都有f(x1)>f(x2).那么f,f(2),f(3)从小到大的关系是___

解析:由①得f(x+2)=f(x+1+1)==f(x),所以函数f(x)的周期为2.因为函数y=f(x+1)的图象关于y轴对称,将函数y=f(x+1)的图象向右平移一个单位即得y=f(x)的图象,所以函数y=f(x)的图象关于x=1对称;根据③可知函数f(x)在[0,1]上为减函数,又结合②知,函数f(x)在[1,2]上为增函数.因为f(3)=f(2+1)=f(1),在区间[1,2]上,1<<2,所以f(1)<f<f(2),即f(3)<f<f(2).

答案:f(3)<f<f(2)

试题应用体验

1 若函数f x x3 6bx 3b在 0,1 内有极小值,则实数b的取值范围是 a 0,1b 1 c 0d.解析 选d.f x x3 6bx 3b,f x 3x2 6b,令f x 0,即3x2 6b 0,x b 0 f x 在 0,1 内有极小值,0 1,0 b 选d.2 已知某生产厂家的年利润y...

信息技术应用体验总结

信息技术应用体验总结范文1 茫茫人海中,我遇见了你,于是变成了最美的回忆 当xx弋阳暑期教师全员培训遍地开花时,在领导的关照下,我有幸参加了信息技术培训。开班仪式上,我们聆听了威震江西省乃至全国的课件制作大师 张威亮老师对好课件的诠释,顿时令人耳目一新,回顾之前自己所做的那些课件,简直不堪入目,对课...

信息技术应用体验心得体会

三 提高课件制作水平。掌握多 技术,熟悉多 软件的使用,了解多 课件制作流程已成为当代教师应具备的基本素质,而制作课件既要讲究精美又要讲究实用。制作课件是一个艰苦的创作过程,优秀的课件应融教育性 科学性 艺术性 技术性于一体,这样才能最大限度地发挥学习者的潜能,强化教学效果,提高教学质量。所以通过此...