一、单项选择题(每题3分,满分27分)
、下列各式:①a0=1;②a2a3=a5;③2-2=-;
-(3-5)+(2)4÷8×(-1)=0;⑤x2+x2=2x2,其中正确的是( )
abcd、②④
2、下列图形中既是轴对称图形又是中心对称图形的是( )
abcd、3、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关。
系的图象是( )
abcd、4、下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )
abcd、5、若a(x1,y1),b(x2,y2),c(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是( )
a、y3>y1>y2b、y1>y2>y3
c、y2>y1>y3d、y3>y2>y1
6、某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为x甲、 x乙,方差依次为s甲2、s乙2,则下列关系中完全正确的是( )
a、 x甲< x乙,s甲2<s乙2 b、 x甲= x乙,s甲2<s乙2
c、 x甲= x乙,s甲2>s乙2 d、 x甲> x乙,s甲2>s乙2
7、分式方程有增根,则m的值为( )
a、0和3b、1
c、1和-2d、3
8、如图,a、b、c、d是⊙o上的四个点,ab=ac,ad交bc于点e,ae=3,ed=4,则ab的长为 (
a、3b、2、
c、 d、3
9、已知二次函数y=ax2+bx+c(a≠0)的图象。
如图所示,现有下列结论:①b2-4ac>0
a>0③b>0④c>0⑤9a+3b+c<0,则其中结论正确的个数是( )
a、2个b、3个
c、4个d、5个。
10、如图,在rt△abc中,ab=cb,bo⊥ac,把△abc折叠,使ab落在ac上,点b与。
ac上的点e重合,展开后,折痕ad交bo
于点f,连接de、ef.下列结论:
tan∠adb=2;②图中有4对全等三角形;
若将△def沿ef折叠,则点d不一定落。
在ac上;④bd=bf;⑤s四边形dfoe=s△aof,上述。
结论中正确的个数是( )
a、1个b、2个c、3个d、4个。
二、填空题(每题3分,满分30分)
年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造
了世博会历史上新的纪录.用科学记数法表示为人次.(结。
果保留两个有效数字)
12、函数y=中,自变量x取值范围是。
13、如图,点b、f、c、e在同一条直线上,点a、d在直线be的两侧,ab∥de,bf=ce,请添加一个适当的条件使得ac=df.
14、因式分解:-3x2+6xy-3y2
15、中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率是。
16、将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.
17、一元二次方程a2-4a-7=0的解为。
18、某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.
19、已知三角形相邻两边长分别为20cm和30cm,第三边上的高为10cm,则此三角形的面积为cm2.
20、如图,△abc是边长为1的等边三角形.取bc边中点e,作ed∥ab,ef∥ac,得到四边形edaf,它的面积记作s1;取be中点e1,作e1d1∥fb,e1f1∥ef,得到四边形e1d1ff1,它的面积记作s2.照此规律作下去,则s2011
三、解答题(满分60分)
21、先化简,再求值:(1-)÷其中a=sin60°.
22、如图,每个小方格都是边长为1个单位长度的小正方形.
1)将△abc向右平移3个单位长度,画出平移后的△a1b1c1.
2)将△abc绕点o旋转180°,画出旋转后的△a2b2c2.
3)画出一条直线将△ac1a2的面积分成相等的两部分.
23、已知:二次函数y= 34x2+bx+c,其图象对称轴为直线x=1,且经过。
点(2,-)
1)求此二次函数的解析式.
2)设该图象与x轴交于b、c两点(b点在c点的左侧),请在此二次函数。
x轴下方的图象上确定一点e,使△ebc的面积最大,并求出最大面积.
注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=-.
24、为增强学生体质,教育行政部门规定学生每天在校参加户外体育活动的平均时间不少于1小时.某区为了解学生参加户外体育活动的情况,对部分学生参加户外体育活动的时间进行了抽样调查,并将调查结果绘制成如下的统计图表(不完整).请你根据图中提供的信息解答下列问题:
(1)求a、b的值.
(2)求表示参加户外体育活动时间为0.5小时的扇形圆心角的度数.
(3)该区0.8万名学生参加户外体育活动时间达标的约有多少人?
25、某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.
2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
26、在正方形abcd的边ab上任取一点e,作ef⊥ab交bd于点f,取fd的中点g,连接eg、cg,如图(1),易证eg=cg且eg⊥cg.
(1)将△bef绕点b逆时针旋转90°,如图(2),则线段eg和cg有怎样的数量关系和位置关系?请直接写出你的猜想.
(2)将△bef绕点b逆时针旋转180°,如图(3),则线段eg和cg又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.
27、建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
28、已知直线y=x+4与x轴、y轴分别交于a、b两点,∠abc=60°,bc与x轴交于点c.
(1)试确定直线bc的解析式.
(2)若动点p从a点出发沿ac向点c运动(不与a、c重合),同时动点q从c点出发沿cba向点a运动(不与c、a重合),动点p的运动速度是每秒1个单位长度,动点q的运动速度是每秒2个单位长度.设△apq的面积为s,p点的运动时间为t秒,求s与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△apq的面积最大时,y轴上有一点m,平面内是否存在一点n,使以a、q、m、n为顶点的四边形为菱形?若存在,请直接写出n点的坐标;若不存在,请说明理由.
一、单项选择题(每题3分,满分27分)
1、d;2、b;3、d;4、a;5、a;6、c;7、d;8、c;9、b;10、c.
二、填空题(每题3分,满分30分)
.3×107;12、x≥-2且x≠3;13、ab=de或∠a=∠d;14、-3(x-y)2;
;17、a1=2+,a;19、(100+50)或(100-50); 20、﹒(表示成()﹒亦可)
三、解答题(满分60分)
21、解:原式=-﹒a+1(3分)
把a=sin60°=代入(1分)
原式=+1=(1分)
22、解:(1)如图所示,平移正确给(2分);
2)如图所示旋转正确给(2分);
3)面积等分正确给(2分)(答案不唯一).
23、解:1)由已知条件得2分)
解得b=-,c=-,此二次函数的解析式为y=x2-x-;(1分)
2)∵x2- x-=0,∴x1=-1,x2=3,b(-1,0),c(3,0),∴bc=4,(1分)
e点在x轴下方,且△ebc面积最大,e点是抛物线的顶点,其坐标为(1,-3),(1分)
△ebc的面积=×4×3=6.(1分)
2019齐齐哈尔中考数学考试说明
2011齐齐哈尔市中考数学考试说明。一 命题范围与原则。一 命题范围。以本地区使用的,人民教育出版社出版的义务教育 六三 学制 全日制实验教科书为基准 二 命题原则。初中毕业生数学学业考试要面向全体学生 坚持能力立意,以有利于推动课程改革的深入发展,有利于加强学科教与学的正确导向,尤其要把考查学生综...
2023年齐齐哈尔市中考语文考试说明
6.注意课程资源的开发,以适当的方式体现我市自然风光 风俗民情 文物古迹等文化特色,激发学生了解家乡 热爱家乡的美好情感。更加丰富语文课程的价值追求,促进学生在语文方面的和谐发展。二 考查内容与说明。依据 全日制义务教育语文课程标准 2011年版 规定的内容和要求,客观 公正地衡量每一个学生的语文学...
2019中考试题
阅读下列两段选文,完成6 10题。12分 甲 公与之乘。战于长勺。公将鼓之。刿曰 未可。齐人三鼓。刿曰 可矣。齐师败绩。公将驰之。刿曰 未可。下视其辙,登轼而望之,曰 可矣。遂逐齐师。既克,公问其故。对曰 夫战,勇气也。一鼓作气,再而衰,三而竭。彼竭我盈,故克之。夫大国,难测也,惧有伏焉。吾视其辙乱...