《数学思维方法》读后感

发布 2023-09-12 16:36:01 阅读 2381

《数学思维方法》读后感。

数学思维方法》读后感。

周末在家打开书香中国的网页,看到了《数学思维方法》这本书,顿时被里面生动的案例吸引,如饥似渴的读起来。

如美国数学家哈尔莫斯所说“问题是数学的心脏”,要开展思维,必须由数学问题开始,而一个好的数学问题,可以引出一串数学问题,即形成所谓的问题链。其次,对于数学问题,人们在思考分析的基础上,通过一系列合情合理的方法,会形成对于该问题结论的某种猜想。数学问题在数学思维中具有首要性,由此我们应该对数学问题有个详细的了解。

合情推理虽然对于发现数学猜想具有重要作用,但由合情推理得到的数学猜想,毕竟是猜想。而猜想的正确性,则待于严密的数学证明。通过证明得到的数学结论,那就是数学定理。

数学的结论性知识,基本上以定义、公里和定理的形式来表达。但这些定理、定义和公理都是数学中的一个个知识点,要把这些知识点串联起来,形成一个知识系统,在数学中有一种特殊的方法,那就是公理化方法。这是数学特有的思维方法。

数学建模是运用数学解决实际问题的有效方法,事实上,所谓数学建模就是建立起有关实际问题的相应数学模型,通过对数学模型的研究,达到解决实际问题的目的。因而,数学建模实际上是一个运用数学思维方法解决问题的过程。

分析法、综合法、抽象法和概括法是数学思维方法最基本的'方法。数学语言的独特性表现为它是一种独一无二的语言,这是目前世界上唯一的一门描写自然、社会和人类社会中数量关系、空间形式和抽象结构,表达科学思想的世界通用语言。不同母语的数学家,虽然他们的自然语言不同,在许多方面一时难以沟通,但一旦讨论起数学问题,他们就有共同的语言,可以毫无障碍的进行沟通,共同来思维同一个对象。

数学思维往往表现为是一种系统的综合性思维,很少有用单一的思维形式来解决问题的。数学又是一门高度严谨的学科,所有的理论都必须经过严格的逻辑论证得到,作为数学活动结果,即数学结论是十分严谨的。从数学本身来看,数学活动主要包括三个方面:

数学的发现、论证和应用。于是,数学思维方法应包括数学发现的思维方法、数学论证的思维方法和数学应用的思维方法三的部分。事实上,抽象和概括、分析和综合,既贯穿于数学思维的始终,又是数学思维的实质。

欧几里得在前人工作的基础上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的、严密逻辑体系的《几何原本》。这是世界上第一个公理化系统。

哈尔莫斯在《数学的心脏》中,把数学问题分为平凡问题和深奥问题。所谓平凡的数学问题是指那些接近基本定义的,易懂、易证的数学问题。好数学问题的标准是具有启发性和可发展性。

所谓启发性,主要是指数学问题能启发人步步深入,直至问题的解决;即使暂时不能解决,也能让人舍不得放弃;有较强的**性,能让人有所思也有所得,但又不能立即就把问题彻底解决。而可发展性,实际上是说,由一个数学问题可以发展为多个数学问题,即发展为数学问题链或数学问题群,而不是一个孤立的问题。数学问题的五条基本性质是首要性、数学性、**性、链锁性和相对性。

数学性是数学问题的基本性质,不具有数学性的问题就不是数学问题。例如,七桥问题就是这样的数学问题,在一般人眼中,它只是一个游戏,可在欧拉眼中,它却是个非常好的数学问题。

《数学思维养成课》读后感

数学思维养成课 读后感。通读林碧珍老师的 数学思维养成课 朴实易懂的语言阐述了各种数学思想的知识分布和一些数学思维概念含义的解释。大家都明白,数学教学实质上是数学思维活动的教学。学习知识和训练思维既有区别,也有着密不可分的内在联系,它们相辅相成的联系他们是在小学数学教学过程中同步进行的。儿童认识事物...

思维模型读后感

读后感,希望对您有帮助!思维模型读后感。文 王森。为什么学习思维模型 想要找到解决问题更好的方式。为什么思维模型可以更好的解决问题?日常中解决问题,基本是基于直觉和经验。直觉可以使简单的事情变得高效,同样也难以解决复杂的问题,遇到复杂问题时,效率会成倍的降低。思维模型是基于演绎法,而不是基于归纳法本...

《胜者思维》读后感

读后感,希望对您有帮助!胜者思维 读后感。本文是关于读后感的,仅供参考,如果觉得很不错,欢迎点评和分享。胜者思维 读后感。文 韩宏心。一个人的品行是可以由他的文字窥出端倪的,而 胜者思维 这本书成功地让我想了解金一南这位将军。这本书是该看看的,不仅是因为金一南的个人魅力,更是为了在这个时代,亦保持着...