Mveyon2023年农学数学大纲

发布 2020-02-15 22:16:28 阅读 3458

||生活|一个人总要走陌生的路,看陌生的风景,听陌生的歌,然后在某个不经意的瞬间,你会发现,原本费尽心机想要忘记的事情真的就这么忘记了。

|--郭敬明。

高等数学。一、函数、极限、连续。

1. 理解函数的概念,掌握函数的表示法,会建立应用问题

中的函数关系.

2. 了解函数的有界性、单调性、周期性和奇偶性.

3. 理解复合函数及分段函数的概念,了解反函数及隐函数

的概念. 4. 掌握基本初等函数的性质及其图形,了解初等函数的概

念. 5. 了解数列极限和函数极限(包括左极限和右极限)的概念.

6. 了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,掌握利用两个重要极限求极限的方法.

7. 理解无穷小量的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系.

8. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

9. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学。

1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义,会求平面曲线的切线方程和法线方程.

2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求隐函数的导数.

3.了解高阶导数的概念,掌握二阶导数的求法.

4.了解微分的概念以及导数与微分之间的关系,会求函数的微分.

5.理解罗尔(rolle)定理和拉格朗日(lagrange)中值定理,掌握这两个定理的简单应用.

6.会用洛必达法则求极限.

7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及应用.

8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时, 的图形是凹的;当时, 的图形是凸的),会求函数图形的拐点和渐近线(水平、铅直渐近线).

三、一元函数积分学。

1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.

2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法与分部积分法.

3.会利用定积分计算平面图形的面积和旋转体的体积.

4.了解无穷区间上的反常积分的概念,会计算无穷区间上的反常积分.

四、多元函数微积分学。

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程。

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程和一阶线性微分方程的求解方法.

线性代数。一、行列式。

1.了解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵。1.理解矩阵的概念,了解单位矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,了解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

三、向量。1.了解向量的概念,掌握向量的加法和数乘运算法则.

2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

3.理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩.

4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系.

四、线性方程组。

1.会用克莱姆法则解线性方程组.

2.掌握非齐次线性方程组有解和无解的判定方法.

3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.

4.了解非齐次线性方程组的结构及通解的概念.

5.掌握用初等行变换求解线性方程组的方法.

五、矩阵的特征值和特征向量。

1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.

2.了解矩阵相似的概念和相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.

3.了解实对称矩阵的特征值和特征向量的性质.

概率论与数理统计。

一、随机事件和概率。

1.了解样本空间的概念,理解随机事件的概念,掌握事件的关系与运算.

2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(bayes)公式.

3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.

二、随机变量及其分布。

1.理解随机变量的概念.理解分布函数的概念及性质.会计算与随机变量相联系的事件的概率.

2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、泊松(poisson)分布及其应用.

3.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为的指数分布的概率密度为

4.会求随机变量简单函数的分布.

三、二维随机变量及其分布。

1.理解二维随机变量的概念,理解二维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布和边缘分布,理解二维连续型随机变量的概率密度和边缘密度,会求与二维离散型变量相关事件的概率.

2.理解随机变量的独立性及不相关性的概念,了解随机变量相互独立的条件.

3.了解二维均匀分布,了解二维正态分布的概率密度,了解其中参数的概率意义.

4、会求两个独立随机变量的和的分布.

四、随机变量的数字特征。

1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.

2.会求随机变量简单函数的数学期望.

五、大数定律和中心极限定理。

1.了解切比雪夫不等式.

2.了解切比雪夫大数定律和伯努利大数定律.

3.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布随机变量序列的中心极限定理).

六、数理统计的基本概念。

1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为

2.了解分布、 分布和分布的概念和性质,了解分位数的概念并会查表计算.

3.了解正态总体的常用抽样分布.

2023年农学考研冲刺

首先从题型上分析,化学考查中,单项选择题的分值为60分,填空题35分,两项客观题共计95分的分值,占总分的63.3 计算 分析与合成题有8个,共55分,占36.6 从分值上看,客观题目的分值要高于主观题,涉及的考查方式可能是无机 分析 有机化学的计算 各种实验现象和化学原理的分析 有机方程式的合成等...

2023年考研农学大纲变化

刚刚发布的2011农学门类联考考研大纲,与10年大纲对比发现,化学专业课中无机及分析化学和有机化学这两门课的内容完全一样,没有任何变化。动 植物生理生化专业课中,植物生理学大纲也没有变化,只有生物化学部分有一处变动。新大纲中,第二章蛋白质化学部分的第二节氨基酸的内容有3个考点,其中第2个为 根据r基...

2023年考研农学命题趋势

2013 09 17 15 19 重基础强应用亮交叉。一 命题思路 虽然今年的考纲没有太大的变化,但从考查目标 形式和内容,试卷题型结构 考查知识点分布等方面,我们还是能看出一些农学统考学科的考试特点 1 重视基础知识 理论和基本技能的复习。农学专业课的考试科目设置都是农学专业研究的基础,也是一个农...