八年级数学下册2 2 1平方根教学设计 新版 北师大版

发布 2023-01-09 17:08:28 阅读 4198

平方根。

一)创设情境,引入新知。

活动一:复习旧知。

问题1:老师手中有一正方形**,若已知边长是3时,同学们说其面积是多少呢?

生:32=9 并在黑板上写出。

问题2:以上算式属于我们学过的什么运算?在此算式中存在几个量?分别是什么?

生:乘方运算;存在三个量;底数、指数和幂。

问题3:乘方运算是知道了哪些量求哪个量的运算?

生:底数、指数求幂的运算。

活动二:**新知。

问题4:若正方形的面积是9时,同学们说其边长是多少呢?

师:同学们我们比较这两种运算,有什么区别?

生:第一种运算,是知道了底数、指数求幂的运算即乘方运算;第二种运算,是知道了幂、指数求底数的运算。

师:很好,第二种运算就是今天我们要学习的一种新运算---求一个正数的算术平方根的运算。

板书1)§2.2算术平方根。

设计意图:通过利用旧知,引入新知。学生乐于去做,敢于发言,同时,让学生感受到,通过自己的**,“玩”出了很多意想不到的收获,使数学课不再枯燥。

注重了用数学的方法去研究问题,从数学的角度去思考问题,使数学课更具有数学味,同时,也揭示了本节课的教学重点。

问题5:若正方形的面积是3时,同学们说其边长m又是多少呢?

m师:通过上节课的学习我们知道它的范围是多少?它具体是多少,你知道吗?

生:1.7<m<1.8,1.73<m<1.74,…;是无限不循环小数。

师:同学们,这是我们在小学遇到过“π”的基础上,又一次遇到不能准确的去表示一个数,为了能精确的表示它,我们引进一个新的记号“” 读作“根号”.我们就用来表示m,这就好比小学中我们样的道理。

设计意图:通过自主探索,让学生亲身体验概念的形成过程, 感受到概念引入的必要性,充分体现了学生的主体作用。

结论:像以上算式m2=3中,我们就把正数m叫做3的算术平方根。记作:“ 即m=

问题6:请仿照上面表示“若m2=3,则m=”的办法,试着分别表示出下列正数x.

1)x2=3 (2) x2=5 (3) x2=7 (4) x2=a(a>0)

设计意图:算术平方根的概念是由具体到抽象、由特殊到一般而形成的.通过问题6的尝试,培养学生抽象概括的能力。

二)多方联动、理解新知。

师:现在我们一起来概括算术平方根的定义:

板书2):一般的,一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根。记为“”读作“根号a”.

板书3):0的算术平方根是0,即=0.

问题1:用含根号的式子表示下列各数的算术平方根。(多**出示)

学生独立完成后交流,并不失时机地追问)

师:通过此问题,你会有什么新的发现?

生:象=4,=5一样,这些正数可以写成有理数平方的形式,其算术平方根就可以用一个非负有理数表示,而有些正数写不成有理数平方的形式,其算术平方根只能用根号表示,如上面的7和14,它们的算术平方根只能分别写成、.

设计意图:强化对算术平方根概念的认识,当细则细,为求出数的算术平方根搭建引桥,目的在于慢中求进,扎实有效。

师:根据同学们的认识,我们一起来完成例题1.

例题1:求下列各数的算术平方根:(多**出示)

解:(2)(老师板演第2题的解题过程)

900的算术平方根是30

即 =30设计意图:规范学生解题的格式,让学生明确解题的思路。

解:(4) (老师板演第4题)

的算术平方根是 即。

设计意图:体验求一个正数的算术平方根的过程,摸索利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如:10的算术平方根是.同时,突出了本节课的教学重点。

思考:通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?(多**出示)

设计意图:让学生感知平方运算和求正数的算术平方根是互逆的关系.

问题2:仿照“例题1”,请同学们自己编写两道类似的题目,供其他同学解答。

设计意图:要把所学的新知识,融入到自己已有的知识结构中来,通过编题,增进学生对概念的理解,力求做到学以致用,举一反三。

师:同学们,我们都能编题了,真了不得!看来下面的实际问题已不在话下。(出示例题2)

例题2:自由下落的物体的高度h(米)与下落时间t(秒)的关系为h= 4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?(多**出示)

多**演示解题过程)

解:将h=19.6代入公式h=4.9t2得t2=4,所以t==2(秒),即铁球到达地面需要2秒。

设计意图:用算术平方根的知识解决实际问题,把数学与生活实施了链接,以增进学生对数学价值的体悟.

问题3:有意义吗? 为什么? (多**出示)

分析:无意义,因为任何数的平方都是非负数,即a2≥0,故无意义。

板书4):性质。

算术平方根是非负数,负数没有算术平方根。用式子表示为(a≥0)为非负数,这是算术平方根的一条很重要的性质。

设计意图:让学生认识到算术平方根定义中的两层含义:中的a是一个非负数,a的算术平方根也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.

师:现在,同学们对算术平方根的认识可以说已经较为全面,事实到底如何呢?小试牛刀,看看自己的身手吧!

三)自主运用、强化新知。

1.填空:(多**出示)

1)的算术平方根是。

2)的算术平方根为。

3)的算术平方根为。

设计意图:通过三个递进式的填空题,检测学生对算术平方根概念的把握情况,并通过(3)小题突出审题意识、优化学生的思维习惯。

2.若一个正方形的边长为3时,当面积扩大原来的4倍后,其大正方形的边长b变为原来的多少倍?(多**出示)

解:∵b2 = 4×32 =36

即:大正方形的边长是原来边长的2倍。

3.请同学们写出一些数的算术平方根,使它分别是整数、分数、无限不循环小数。(多**出示)

设计意图:通过这样的开放式训练,使学生对算术平方根概念的认识和理解得到升华,让学生再一次品尝到成功的喜悦。在师生互动的过程中,将课堂推向了高潮,把难以理解的知识,像剥竹笋一样一层一层的剥开,使学生眼前豁然一亮。

同时,也突破了本节课的教学难点。

师:同学们说的都很好,看来我们通过今天的学习,有了很多的收获。

四)合作交流、归纳总结。

同学们,通过本节课的共同学习,请你从知识、方法与情感等方面谈一谈自己的认识。

师:这节课主要就平方根中的算术平方根进行讨论,求一个正数的算术平方根与求一个正数的平方正好是互逆的过程,因此,求正数的算术平方根实际上可以转化为求一个数的平方运算。 只不过,只有正数和0才有算术平方根,负数没有算术平方根。

设计意图:通过回顾、梳理、反思,使学生对所学知识得到充分的消化和吸收,理顺了各知识点间的关系。老师重点从以下几个方面进行强调:

1.算术平方根概念引入的重要性,尤其是让学生经历概念的形成过程以及里面所蕴含的数学思想;

2.算术平方根概念应用的广泛性;

3.倡导学生善于发现、勇于探索、敢于创新。

五)布置作业,自我巩固。

1.必做题:p40习题.

2.选做题:

1)一个正方形的面积为原来的100倍时,它的边长变为原来的多少倍?

2)一个正方形的面积变为原来的n倍时,它的边长变为原来的多少倍?

设计意图:设置分层作业,兼顾不同水平的学生,关注差异,使学生获得各自的发展,加深学生对“公式”的进一步理解的同时,扩展学生的思维,让优秀生有舒展的舞台。

附。课外阅读材料:“根号的由来”

现在,我们都习以为常地使用根号(如等等),并感到它使用起来既简明又方便,那么,根号是怎样产生和演变成现在这种样子的呢?

古时候,埃及人用记号“┌”表示平方根;印度人在开平方时,在被开方数的前面写上ka;阿拉伯人用表示;2023年前后,德国人用一个点“.”来表示平方根,两点“..表示4次方根,三个点“..

表示立方根,比如,.3、..3、..

3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“”。2023年,路多尔夫在他的代数著作中,首先采用了根号,比如他写4是2,9是3,并用8,8表示,。

但是这种写法未得到普遍的认可与采纳。

与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写r来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的,当时有人写成现在的,用数学家邦别利(1526—2023年)的符号可以写成 其中“”相当于今天用的括号,p相当于今天用的加号(那时候,连加减号“+”还没有通用).

直到十七世纪,法国数学家笛卡尔(1596—2023年)第一个使用了现今用的根号“”。在一本书中,笛卡尔写道:“如果想求的平方根,就写作,如果想求的立方根,则写作。”

这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。

现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号的使用,比如25的立方根用表示。以后,诸如等等形式的根号渐渐使用开来。

由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的。

学年八年级数学下册17 1平方根 1 导学案新人教版

2019 2020学年八年级数学下册17.1平方根 1 导学案新人教版。环节创设情境引入目标。主要内容。由2与希帕索斯之死的故事 见课件 引入学习目标 1 了解平方根的概念,会用根号表示一个数的平方根 2 理解平方根的性质 3.会求一个数的平方根 环节。一 平方根的概念1.定义 如果一个数x的 等于...

人教版八年级数学上册《13 1平方根》教学设计

13.1 平方根 教学设计 1 教学设计思想 平方根及算术平方根是两个重要的概念,是全章的教学重点。学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是两节课的主要教学目标。本节学习第一课时,平方根的概念与求法。在教学设计中,力...

人教版八年级数学上册《13 1平方根》教学设计

13.1 平方根 教学设计 2 1 教学目标。1.1知识目标 理解平方根和算术平方根的概念,了解平方与开平方的关系。1.2能力目标 学会平方根 算术平方根的表示法和平方根 算术平方根,并运用以上知识解决实际问题。1.3 情感目标 学习从特殊到一般的数学思想方法,培养学生从实践到理论,从具体到抽象的辨...