《统计学》作业

发布 2022-08-26 05:05:28 阅读 6366

《统计学》课程习题。

1.举例说明统计分组可以完成的任务。

2.举一个单向复合分组表的例子,再举一个双向复合分组表的例子。

3.某市拟对该市专业技术人员进行调查,想要通过调查来研究下列问题:

1)通过描述专业技术人员队伍的学历结构来反映队伍的整体质量;(2)研究专业技术人员总体的职称结构比例是否合理;(3)描述专业技术人员总体的年龄分布状况;(4)研究专业技术人员完成的科研成果数是否与其最后学历有关。

请回答: 1)该项调查研究的调查对象是。

2)该项调查研究的调查单位是。

3)该项调查研究的报告单位是。

4)为完成该项调查研究任务,对每一个调查单位应询问下列调查项目。

4.某车间按工人日产量情况分组资料如下:

根据上表指出:

1)变量、变量值、上限、下限、次数(频数);

2)各组组距、组中值、频率。

5.某地区人口数据如下表,请在空白处填写组距、组中值、频率、上限以下累计频数。

注:年龄以岁为单位,小数部分按舍尾法处理。

6.对下列指标进行分类。(只写出字母标号即可)

a手机拥有量 b商品库存额 c市场占有率 d人口数。

e 出生人口数 f 单位产品成本 g人口出生率 h利税额。

1)时期性总量指标有2)时点性总量指标有。

3)质量指标有4)数量指标有。

5)离散型变量有6)连续型变量有。

7.现有某地区50户居民的月人均可支配收入数据资料如下(单位:元):

要求:1)试根据上述资料作等距式分组,编制次(频)数分布和频率分布数列;

2)编制向上和向下累计频数、频率数列;

3)用频率分布列绘制直方图、折线图和向上、向下累计图;

4)根据图形说明居民月人均可支配收入分布的特征。

8.某商贸公司从产地收购一批水果,分等级的收购**和收购金额如下表,试求这批水果的平均收购**。

9.某厂长想研究星期一的产量是否低于其他几天,连续观察六个星期,所得星期一日产量为,单位:吨。同期非星期一的产量整理后的资料为:

要求:1)计算星期一的平均日产量、中位数、众数;

2)计算非星期一的平均日产量、中位数、众数;

3)比较星期一和非星期一产量的相对离散程度哪一个大一些。

10.甲、乙两单位从业人员人数及工资资料如下:

要求:1)比较两个单位工资水平高低;

2)说明哪一个单位的从业人员工资的变异程度较高。

11.根据下表绘制某地区劳动者年龄分布折线图(年龄以岁为单位,小数部分按舍尾法处理)。

某地区劳动者年龄构成。

12.向三个相邻的军火库掷一个炸弹。三个军火库之间有明显界限,一个炸弹不会同时炸中两个或两个以上的军火库,但一个军火库**必然连锁引起另外两个军火库**。若投中第一军火库的概率是0.

025,投中第二军火库以及投中第三军火库的概率都是0.1。求军火库发生**的概率。

13.某厂产品中有4%的废品,100件合格品中有75件一等品。求任取一件产品是一等品的概率。

14.某种动物由出生能活到20岁的概率是0.8,由出生能活到25岁的概率是0.4。问现龄20岁的这种动物活到25岁的概率为何?

15.在记有1,2,3,4,5五个数字的卡片上,第一次任取一个且不放回,第二次再在余下的四个数字中任取一个。求:

1)第一次取到奇数卡片的概率;(2)第二次取到奇数卡片的概率;(3)两次都取到奇数卡片的概率。

16.两台车床加工同样的零件。第一台出现废品的概率是0.03,第二台出现废品的概率是0.

02。加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。求任意取出的零件是合格品的概率。

如果任意取出的零件是废品,求它属于第二台车床所加工零件的概率。

17.设某运动员投篮投中概率为0.3,试写出一次投篮投中次数的概率分布表。若该运动员在不变的条件下重复投篮5次,试写出投中次数的概率分布表。

18.随机变量x服从标准正态分布n(0,1)。查表计算:p(0.

319.随机变量x服从正态分布n(1720,2822)。试计算:p(140020.若随机变量x服从自由度等于5的分布,求p(321.若随机变量x服从自由度为f1=4,f2=5的f-分布,求p(x >11)的近似数值;若x服从自由度为f1=5,f2=6的f-分布,求p(x<5)的近似值。

22.若随机变量x服从自由度为10的t–分布,求p(x>3.169);若x服从自由度为5的t –分布,求p(x<–2.571)。

23.同时掷两颗骰子一次,求出现点数和的数学期望和方差。

24.已知100个产品中有10个次品。现从中不放回简单随机抽取5次。求抽到次品数目的数学期望和方差。

25.假设接受一批产品时,用放回方式进行随机抽检,每次抽取1件,抽取次数是产品总数的一半。若不合格产品不超过2%,则接收。假设该批产品共100件,其中有5件不合格品,试计算该批产品经检验被接受的概率。

26.自动车床加工某种零件,零件的长度服从正态分布。现在加工过程中抽取16件,测得长度值(单位:毫米)为:

试对该车床加工该种零件长度值的数学期望进行区间估计(置信概率0.95)。

27.用同样方式掷某骰子600次,各种点数出现频数如下:

试对一次投掷**现1点的概率进行区间估计(置信概率0.95)。

28.某微波炉生产厂家想要了解微波炉进入居民家庭生活的深度。他们从某地区已购买微波炉的2200个居民户中用简单随机不还原抽样方法以户为单位抽取了30户,询问每户一个月中使用微波炉的时间。调查结果为(单位:

分钟):

试估计该地区已购买微波炉的居民户平均一户一个月使用微波炉的时间。并计算估计量的估计方差。

29.某地区有8000户居民,从中简单随机抽取30户,调查各户5月份用水量(单位:吨),数据如下:

试估计该地区全体居民5月份用水总量(计算估计量以及估计量的估计方差)。

30.某大学有本科学生4000名,从中用简单随机抽样方法抽出80人,询问各人是否有上因特网经历。调查结果为,其中有8人无此经历。试估计全校本科学生中无上网经历的学生所占比率。

并计算估计量的估计方差。

31.某城市有非农业居民210万户,从中用简单随机抽样方法抽取出623户调查他们进行住宅装修的意向。调查结果表明,其中有350户已经装修完毕,近期不再有新的装修意向;有78户未装修也不打算装修;其余的有近期装修的意向。试估计该城市非农业居民中打算在近期进行住宅装修的居民户数。

并计算估计量的估计方差。

32.一台自动机床加工零件的直径服从正态分布,加工要求为e(x)=5cm。现从一天的产品中抽取50个,分别测量直径后算得,标准差0.6cm。

试在显著性水平0.05的要求下,检验这天的产品直径平均值是否处在控制状态?

33.已知某厂生产的砖的抗拉强度服从正态分布,加工的技术要求是:方差为1.21,数学期望为32.

5公斤/厘米2。从某天的产品中随机抽取6块,测得抗拉强度分别为.03(公斤/厘米2)。

试以0.05的显著性水平,检验该厂这天所生产砖的抗拉强度的平均值是否处在控制水平?

34.已知初婚年龄服从正态分布。根据9个人的调查结果,样本均值=23.5岁,样本标准差=3岁。问是否可以认为该地区初婚年龄数学期望值已经超过20岁()?

统计学作业

课程 生物统计学。学号 2010114010132 作业次数 p23 第二章试验资料的整理与特征数的计算。习题2.5 某地100例30 40岁健康男子血清总胆固醇 mol l 测定结果如下 试根据所给资料编制次数分布表。解 1.求全距。7.22 2.70 4.52 mol l 2 确定组数和组距 参...

统计学作业

一 调查目的。了解当前大学生的课外活动情况,分析大学生课外活动的现状,指出大学生课外活动的误区,并提出建设性的对策思考。在此基础上,提出相应的改进建议,为今后的大学生的课外活动提供一个可供参考的方案。二 调查内容。本次调查涉及被调查者的性别 年级,课外活动的频率 类别 时长。3 抽样框和样本。1 抽...

统计学作业

spss数据分析报告。表1 3数据 网上搜集一组数据,为2010年四川农户谷子种植意愿影响因素的问卷调查后统计的数据。此次调研设计了2套问卷,分别为 综合考量问卷 和 影响因素问卷 每套问卷发放150份,综合考量问卷 136份,有效问卷125份,有效率91 9 影响因素问卷 123份,有效问卷116...