第一学期九年级期末模拟测试

发布 2022-08-02 14:46:28 阅读 1280

数学试卷。

一、选择题(请将唯一正确答案的字母代号填在题后的括号内。每小题3分,共36分)

1.用配方法解一元二次方程2—4+2=0时,可配方得

a.( 2)=-6 b.( 2)2=6 c.( 2)2=2 d.( 2)2=2

2.如下图,是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是。

a.都b.美c.好d.凉。

3.已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是。

a.内切b.相交c.外离d.外切。

4.如下图,点a、b、c、d、o都在方格纸的格点上,若△cod是由△aob绕点o按逆时针方向旋转而得,则旋转的角度为。

a.30b.45c.90d.135°

5.如下图,直角坐标系中有四个点,其中的三点在同一反比例函数的图象上,则不在这个图象上的点是。

a.p点b.q点c.r点d.s点。

6.如下图,a、b是数轴上两点.**段ab上任取一点c,则点c到表示一l的点的距离不大于2的概率是。

abcd.

7.如下图已知,ab是⊙o的直径,点c,d在⊙o上,∠abc=50°,则∠d为。

a.50b.45c.40d.30°

8.如下图(1),在rt△abc中,∠acb=90°,d是斜边ab的中点,动点p从b点出发,沿b→c→a运动,设s△dpb=y,点p运动的路程为,若与之间的函数图象如下图(2)所示,则△abc的面积为。

a.4b.6c.12d.14

9.二次函数的部分图象如下图所示,关于的一元二次方程=0的一个解,则另一个解___

a.1b.-lc.-2d.0

10.如下图,⊙o的半径为5,弦ab的长为8,m是弦ab上的动点,则线段om长的最小值为。

a.5b.4c.3d.2

11.在rt△abc中,斜边ab=4,∠b=60°,将abc绕点b按顺时针方向旋转60°,顶点c运动的路线长是。

abcd.

12.如下图,函数+b+c的部分图象与轴、轴的交点分别为a(1,0),b(0,3),对称轴是l,在下列结论中,错误的是。

a.顶点坐标为(-1,4)

b.函数的解析式为。

c.当<0时,随的增大而增大。

d.抛物线与轴的另一个交点是(-3,0)

二、填空题:(每小题3分,共18分)

13.已知关于的一次函数(≠0).若其图象经过原点,则。

若y随的增大而减小,则的取值范围是。

4.如下图, abc中,∠acb=90°,∠a=30°,将abc绕c点按逆时针方向旋转角(0<<90°)得到dec,设cd交ab于f,连接ad,当旋转角度数为adf是等腰三角形。

15.已知扇形的圆心角为l50°,它所对应的弧长为20cm,则此扇形的半径是___cm,面积是___cm2(结果保留)

16.已知粉笔盒内共有4支粉笔,其中有3支白色粉笔和l支红色粉笔,每支粉笔除颜色外,其余均相同,从中任取一支粉笔是红色粉笔的概率是。

17.如下图,正三角形的内切圆半径为1,那么这个正三角形的边长为。

18.如下图是二次函数(≠0)和一次函数≠0)的图象,当,的取值范围是。

三、解答题(共6小题,共61分)

19.本题满分8分)

某校九年级在一项“你最喜欢的球类运动”的调查中,共有50名同学参与调查,每人必选且只选一项,将调查结果绘制成频数分布直方图如下,根据图中信息回答:

(1)被调查的同学中选择喜欢网球的有人;

(2)孔明同学在被调查中选择的是羽毛球,现要在参与调查选择喜欢羽毛球的同学中随机抽取2人参加一项比赛,求孔明被选中的概率。

20.(本题满分l0分)

如下图,一次函数与反比例函数的图象相较于a(2,3),b(-3,n)两点。

(1)求一次函数与反比例函数的解析式;

(2)根据所给条件,请直接写出不等式》的解集;

(3)过点b作bc上轴,垂足为c,求s△abc。

21.(本题满分l2分)

如下图,已知ab是⊙o的弦,ob=2,∠b=30°,c是弦ab上的任意一点(不与点a、b重合),连接co并延长co交于⊙o于点d,连接ad。

(1)弦长ab等于___结果保留根号);

(2)当∠d=20°时,求∠bod的度数;

(3)当ac的长度为多少时,以a、c、d为顶点的三角形与以b、c、o为顶点的三角形相似?请写出解答过程。

22.(本题满分11分)

某班毕业晚会设计了即兴表演节目的摸球游戏,在一个不透明的盒子里装有4个分别标有数字的乒乓球,这些球除数字外,其它完全相同.晚会上每位同学必须且只能做一次摸球游戏.游戏规则是:从盒子里随机摸出一个球,放回搅匀后,再摸出一个球,若第二次摸出的球上的数字小于第一次摸出的球上的数字,就要给大家即兴表演一个节目。

(1)参加晚会的同学性别比例如图,女生有18人,则参加晚会的学生共有___人;

(2)用列表法或树形图法求出晚会的某位同学即兴表演节目的概率;

3)估计本次晚会上有多少名同学即兴表演节目?

23.(本题满分8分)

如下图,有一直径是l米的圆形铁皮,要从中剪出一个圆心角是l20°的扇形abc,求:

(1)被剪掉阴影部分的面积。

(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?

24.(本题满分l2分)

已知:抛物线经过点p(-1,-2)

(1)求的值;

(2)若=3,求这条抛物线的顶点坐标;

(3)若》3,过点p作直线pa上y轴,交y轴于点a,交抛物线于另一点b,且bp=2pa,求这条抛物线所对应的二次函数关系式。(提示:请画示意图思考)

九年级第一学期期末模拟测试卷

姓名班级得分。一 选择题 每小题4分,共36分 1 下列说法正确的是 a 正方形的周长是其一边长的二次函数。b 函数 对于任何的值,总是正数。c 若与成正比,与成反比,则是的二次函数。d 自由落体运动公式 为常数 是的二次函数。2 当时,一元二次方程无实数解,则二次函数的图象在 a 轴上方 b 轴下...

九年级第一学期期末模拟

九年级数学期末模拟。一。选择题 每小题3分,共30分 1 抛物线的对称轴是 a.直线 b.直线 c.y轴 d.直线。2 如图,a b是两座灯塔,在弓形内有暗礁,游艇c在附近海面游弋,且 aob 80 要使游艇c不驶入暗礁区,则航行中应保持 acb a 小于40 b 大于40 c 小于80 d 大于8...

九年级化学第一学期期末模拟测试卷

可能用到的相对原子质量 h l c 12 o 16 s 32 p 31 ca 40 fe 56 cl 35.5 al 27 cu 64 mg 24 第 卷。一 选择题。1 下列实验中,有化学变化发生的是 a 干冰升华 b co2溶于水 c 石油的分馏 d 自制净水器净水。2 下列化学实验操作,正确的...