六年级上册易错题。
第二章分数乘法易错题。
克比8克多();比10克少()。
2、一群兔子;白兔是黑兔的;那么黑兔是兔子总数的()。
3、a×=b×=c×;其中a、b、c均不为0;则a、b、c的大小关系是b>a>c 。
4、我比你的体重重;则你比我的体重轻()。
5、假分数的倒数都比原数小。
米增加后再增加;相当于比原来增加了。
米增加米后再增加米;相当于比原来增加了米。
8、两根相同的电线;第一根用去了米;第二根用去了它的;剩下的是哪一根长?(不能确定)
9、田园水果店将苹果的**先提高;再按新价降低;最后的**比原价( 低 )(填高或低)()
10、简便计算积累。
11、儿子今年年龄是父亲年龄的;三年前父子年龄之和是49岁;那么现在儿子和父亲各是多少岁?十年前儿子多少岁?
父子今年年龄之和是:49+3×2=55(岁)
父亲今年年龄是:55×=44(岁)
儿子今年年龄是:55-44=11(岁)
十年前儿子今年年龄是:11-10=1(岁)
12、甲是乙的;则甲比乙少;则乙比甲多;则乙是甲的;则乙是甲乙总数的;则甲是甲乙总数的。
甲比乙多;则甲是乙的;则乙比甲少;则乙是甲的;则乙是甲乙总数的;则甲是甲乙总数的。
乙比甲少;则甲比乙多;则甲是乙的;则乙是甲的;则乙是甲乙总数的;则甲是甲乙总数的。
乙是甲的;则甲比乙多;则乙比甲少;则甲是乙的;则乙是甲乙总数的;则甲是甲乙总数的。
甲是甲乙总数的;则甲比乙少;则乙比甲多;则乙是甲的;则甲是乙的;则乙是甲乙总数的。
乙是甲乙总数的;则甲比乙多;则乙比甲少;则乙是甲的;则甲是乙的;则甲是甲乙总数的。
第三章分数除法易错题。
2、男生比女生多;则女生比男生少。(
4、甲数÷=乙数÷;那么甲数一定大于乙数。(
5、如果a∶b=2∶7,那么a=2;b=7。(
6、如果比的前项扩大4倍;比的后项扩大2倍(比的前后项都不为0);则比值( 扩大2倍 )。
7、一堆煤用去了;正好用了6吨;这堆煤还剩( 9 )吨。
8、一个三角形与一个平行四边形的面积之比为3∶4;底的比为2∶3;则高的比为( 9∶4 )。
9、化简下列各比并求出比值。
吨∶800千克 =3∶4 比值为 ②8∶0.5=16∶1 比值为16
10、两个正方体的边长之比为2∶3;则表面积之比为( 4∶9 );体积之比为( 8∶27 )。
11、a的等于b的(a ;b都不为0);则a < b。(填>、=
克盐水中含盐10克;则盐与水的比为( 1∶9 )。
三角形与平行四边形面积之比=×底的比×高的比②两个三角形面积之比=底的比×高的比。
两个平行四边形面积之比=底的比×高的比④平行四边形面积与三角形之比=2×底的比×高的比。
1.一个三角形与一个平行四边形的面积之比为4∶5;底的比为3∶5;则高的比为( 8∶3 )。
2.一个三角形与一个平行四边形的面积之比为2∶3;高的比为6∶5;则为底的比( 10∶9 )。
3.一个三角形与一个平行四边形的高的比为4∶3;底的比为3∶2;则面积之比为( 1∶1 )。
4.两个三角形的面积之比为3∶1;底的比为2∶1;则高的比为( 3∶2 )。
5.两个三角形的面积之比为4∶3;高的比为3∶2;则底的比为( 8∶9 )。
6.两个三角形的高的比为2∶5;底的比为1∶3;则面积之比为( 2∶15 )。
1.两个平行四边形的面积之比为1∶4;底的比为2∶1;则高的比为( 1∶8 )。
2.两个平行四边形的面积之比为5∶4;高的比为4∶3;则底的比为( 15∶16 )。
3.两个平行四边形的高的比为2∶7;底的比为3∶5;则面积之比为( 6∶35 )。
4.一个平行四边形与一个三角形的面积之比为5∶2;底的比为3∶2;则高的比为( 5∶6 )。
5.一个平行四边形与一个三角形的面积之比为5∶1;高的比为4∶1;则底的比为( 5∶8 )。
6.一个平行四边形与一个三角形的高的比为2∶9;底的比为3∶2;则面积之比为( 2∶3 )。
第一至三章易错题。
1.84个是( 12 );60的是把60平均分成( 10 )份;表示这样的( 13 )份。
2. 5与它倒数的和的是()。
3.18米比( 27米 )少;( 24米 )比18米多。
4.a的等于b的4倍;且a、b都不为0;则b是a的()。
5.甲、乙、丙三人竞走;甲、乙速度比是3∶5;乙、丙速度比是3∶2;甲、乙、丙三人的速度比是( 9∶15∶10)。
6.1米的铁丝;剪下;还剩米。
7.a除以真分数所得的商一定大于a
8.把5米长的铁丝截成25小段;每段占总长的( d )
a. b. c. d.无法确定。
9.a÷1=b÷=c÷(a、b、c均不为0);那么a、b、c从大到小的顺序排列是( c )
a.a>b>c b.b>a>c c.c>a>b
10.清华同方某款电脑;现价3200元;现价比原价降低了;原价多少元?列式为( c )
a.3200÷(1÷) b.3200×(1+) c.3200÷(1—) d. 3200×(1—)
11.a、b、c三人分杏子;b得a、c总数的;那么b占总数的( c )
a. b. c. d.无法确定。
12.能简算就简算。(3分×5=15分)
13.一瓶鲜橙多;小明喝了一部分;又倒出余下的做成冰块。这时瓶内正好还剩300毫升。
如果这瓶鲜橙多是1升包装。那么小明开始喝了多少升?(5分)
第一次喝完剩余:300÷(1-)=500(毫升)
小明开始喝:1-500÷1000=0.5(升)
14.水结成冰后;体积比原来增加;1.32立方米的水结成冰后体积是多少?1.32立方米。
的冰化成水后体积又是多少?(5分)
1.32×(1+)=1.44(立方米) 1.32÷(1+)=1.21(立方米)
15.水结成冰后;体积比原来增加;1320立方米的水结成冰后体积是多少?(1440升)
水结成冰后;体积比原来增加;1320立方米的冰化成水后体积是多少? (1210升)
冰化成水后;体积比原来减少;1320立方米的冰化成水后体积是多少? (1200升)
冰化成水后;体积比原来减少;1320立方米的水结成冰后体积是多少? (1452升)
第四章易错题。
1.两圆周长比为4∶9;半径比为( 4∶9 );面积比为( 16∶81 )。
2.半圆的半径增加2倍;则半圆面积增加 8 倍。
3.周长相等的所有图形当中圆的面积最大 。
面积相等的所有图形当中圆的周长最小 。
4.若将地球的半径增加1分米;则它的周长增加 6.28 分米。
5. 半圆的周长与半径的比值是 5.14 。
6.求阴影部分周长和面积。
周长:5+5+8+8×3.14÷2=30.56(cm)面积:5×8-3.14×(8÷2)2÷2=14.88(cm2)
周长:2+2+4×3.14×2÷4+2×3.14×2÷4=13.42(cm)
面积: 3.14×42÷4-3.14×22÷4=9.42(cm2)
周长:8×3.14×2+4×3.14×2=75.36(cm)
面积: 3.14×82-3.14×42=150.72(cm2)
周长:4+4+4×3.14×2×=26.84(dm)面积: 3.14×42×=37.68(dm2)
周长:6×3.14×2+3×3.14×2=56.52(cm)
面积: 3.14×62-3.14×32=84.78(cm2)
周长:6×3.14×2÷4+(10-6)×3.14×2÷4+10+(6-4)=27.7(cm)
面积: 10×6-3.14×62÷4-3.14×42÷4=19.18(cm2)
7.求阴影部分面积。
3.14×82÷4-8×8÷2=18.24(cm22×3.14×(4÷2)2-4×4=9.12(cm2)
8.用一根绳子把半径为2分米的两根钢管紧紧捆在一起;则绳子最少要 2.056 米(接头处不计)。
用一根绳子把半径为2分米的三根钢管紧紧捆在一起;则绳子最少要2.456 米(接头处不计)。
用一根绳子把半径为2分米的七根钢管紧紧捆在一起;则绳子最少要3.656 米(接头处不计)。
9.一只羊被拴在某底面为长10米宽8米的房屋的屋角处;已知羊绳长16米。求羊能活动的区域的面积为多少平方米?
3.14×162×+3.14×(16-10)2×+3.14×(16-8)2×=681.38(平方米)
10.时针长12cm;求9小时时针扫过的面积和时针针尖走过的路程?
面积:3.14×122×=339.12(cm2)
路程:3.14×12×2×=56.52(cm)
11.进行200米赛跑;终点在同一直线上;道宽为1.5米;则第七道的起点比第二道的起点应该提前多少米?
3.14×1.5×(7-2)=23.55(米)
12.如下图有一只狗被栓在以建筑物的墙角上;这个建筑物的底面是边长为6米的正方形;栓狗的绳长为15米。现在狗从a点出发;将绳拉紧并沿顺时针跑;你知道狗最多可以跑多少米吗?
六年级数学上册六单元易错题易错题
班级姓名学号 1 填空 30分 米长的钢管用去米后还剩 米,用去还剩 米。克比8克多 比10克少括号里填分数 米比 少,比18米多。4 a b c 其中a b c均不为0,则a b c的大小关系是括号里填字母 5 我比你的体重重,则你比我的体重轻 7 甲 乙 丙三人竞走,甲 乙速度比是3 5,乙 丙...
六年级数学上册六单元易错题
班级姓名学号 1 kg的是 m的是 2 一条6米长的绳子剪去后,再剪去米,还剩 米。3 比30米多的是 米,比40吨轻的是 吨。米比 少,比12米多。比20多 20比25少 是12的 12是15的 7 一桶油重10千克,用去,还剩 千克。8 一桶油重10千克,用去千克,还剩 千克。9 小红看一本80...
六年级数学上册易考易错题 二
命题 王老师满分120分。学生姓名用时得分。一 判断题。10分 1 和1 都是分母为100的分数,它们表示的意义相同。2 两条射线可以组成一个角。3 把一个长方形木框拉成平行四边形后,四个角的内角和不变。4 任何长方体,只有相对的两个面才完全相等。5 周长相等的两个长方形,它们的面积也一定相等。6 ...